

pisense

This package is an alternative interface to the Raspberry Pi Sense HAT. The
major difference to the official API is that the various components of the
Sense HAT (the screen, the joystick, the environment sensors, etc.) are each
represented by separate classes which can be used individually or by the main
class which composes them together.

The screen has a few more tricks including support for any fonts that PIL
supports, representation as a numpy array (which makes scrolling by
assigning slices of a larger image very simple), and bunch of rudimentary
animation functions. The joystick, and all sensors, have an iterable interface
too.

Links

	The code is licensed under the BSD license

	The source code can be obtained from GitHub, which also hosts the bug
tracker

	The documentation (which includes installation, quick-start examples, and
lots of code recipes) can be read on ReadTheDocs

	Packages can be downloaded from PyPI, but reading the installation
instructions is more likely to be useful

Table of Contents

	1. Installation

	2. Getting started

	3. Simple Demos

	4. Project: Environment Monitor

	5. Project: Maze Game

	6. Frequently Asked Questions (FAQ)

	7. Sense HAT Emulator

	8. Development

	9. API - The Sense HAT

	10. API - Screen

	11. API - Screen Arrays

	12. API - Joystick

	13. API - Environment Sensors

	14. API - Inertial Measurement Unit (IMU)

	15. Change log

	16. License

Indices and tables

	Index

	Module Index

	Search Page

1. Installation

1.1. Raspbian installation

On Raspbian, it is best to obtain colorzero via the apt utility:

$ sudo apt update
$ sudo apt install python-pisense python3-pisense

The usual apt upgrade method can be used to keep your installation up to date:

$ sudo apt update
$ sudo apt upgrade

To remove your installation:

$ sudo apt remove python-pisense python3-pisense

1.2. Other platforms

On other platforms, it is probably easiest to obtain colorzero via the pip
utility:

$ sudo pip install pisense
$ sudo pip3 install pisense

To upgrade your installation:

$ sudo pip install -U pisense
$ sudo pip3 install -U pisense

To remove your installation:

$ sudo pip remove pisense
$ sudo pip3 remove pisense

2. Getting started

Warning

Make sure your Pi is off while installing the Sense HAT.

2.1. Hardware

Remove the sense HAT from its packaging. You should have the following parts:

Attention

TODO package pictures

	The Sense HAT itself

	A 40-pin stand-off header. This usually comes attached to the Sense HAT and
many people don’t realize it’s removable (until they try and unplug their
Sense HAT and it comes off!)

	Eight screws and four stand-off posts.

To install the Sense HAT:

Attention

TODO installation pictures

	Screw the stand-off posts onto the Pi from the bottom.

Warning

On the Pi 3B, some people have noticed reduced performance from using a
stand-off post next to the wireless antenna (the top-left position if
looking at the top of the Pi with the HDMI port at the bottom). You
may wish to leave this position empty or simply skip using the
stand-offs entirely (they are optional but make the joystick a little
easier to use).

	Push the Sense HAT onto Pi’s GPIO pins ensuring all the pins are aligned.
The Sense HAT should cover most of the Pi (other than the USB / Ethernet
ports).

	If using the stand-offs, secure them to the Sense HAT from the top with the
remaining screws. If you find you cannot align the holes on the Sense HAT
with the stand-offs this is a sure-fire sign that the pins are misaligned
(you’ve missed a row / column of GPIO pins when installing the HAT). In
this case, remove the Sense HAT from the GPIO pins and try again.

	Finally, apply power to the Pi. If everything is installed correctly (and
you have a sufficiently up to date version of Raspbian on your SD card) you
should see a rainbow appear on the Sense HAT’s LEDs as soon as power is
applied. The rainbow should disappear at some point during boot-up. If the
rainbow does not disappear this either means the HAT is not installed
correctly or your copy of Raspbian is not sufficiently up to date.

2.2. First Steps

Start a Python environment (this documentation assumes you use Python 3, though
the pisense library is compatible with both Python 2 and 3), and import the
pisense library, then construct an object to interface to the HAT:

$ python3
Python 3.5.3 (default, Jan 19 2017, 14:11:04)
[GCC 6.3.0 20170124] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pisense
>>> hat = pisense.SenseHAT()

The hat object represents the Sense HAT, and provides several attributes
which represent the different components on the HAT. Specifically:

	hat.screen represents the 8 x 8 grid of LEDs on the HAT.

	hat.stick represents the miniature joystick at the bottom right of the
HAT.

	hat.environ represents the environmental (pressure, humidity and
temperature) sensors on the HAT.

	hat.imu represents the sensors of the Internal Measurement Unit (IMU)
on the HAT.

2.3. The Screen

[image: _images/highlight_screen.svg]

Let’s try controlling the screen first of all. The screen’s state is
represented as a two-dimensional ndarray of (red, green,
blue) values. The structure of the values is compatible with
Color class from the colorzero library which makes them
quite easy to work with:

>>> from colorzero import Color
>>> hat.screen.array[0, 0] = Color('red')

You should see the top-left LED on the HAT light up red. It’s worth noting at
this point that the two dimensions of the numpy array are rows, then columns
so the first coordinate is the Y coordinate, and that 0 on the Y-axis is at
the top. If this seems confusing (because graphs are typically drawn with the
origin at the bottom left) consider that (in English at least) you start
reading from the top left of a page which is why the origin of computer
displays is there.

As for why the “X” coordinate comes second, this is due to the way image data
is laid out in memory. “Bigger” dimensions (by which we mean slower moving
dimensions) come first, followed by “smaller” dimensions. When dealing with a
graphical display (or reading text in English), we move along the display
first before moving down a line. Hence the “X” coordinate is “smaller”; it
moves “faster” than the Y coordinate, changing with every step along the
display whereas the Y coordinate only changes when we reach the end of a line.

Hence, just as we put “bigger” values first when writing out numbers
(thousands, then hundreds, then tens, then units), or the time (hours, minutes,
seconds), we write the “bigger” coordinate (the Y coordinate) first when
addressing pixels in the display:

>>> hat.screen.array[0, 1] = Color('green')
>>> hat.screen.array[1, 0] = Color('blue')

Numpy’s arrays allow us to address more than one value at once, by “slicing”
the array. We won’t cover all the details of Python slicing (see the linked
manual page for full details), but here’s some examples of what we can do with
slicing (and what bits are optional). We can turn four pixels along the top red
in a single command:

>>> hat.screen.array[0, 0:4] = Color('red')

If the start of a slice is zero it can be omitted (if the end of a slice is
unspecified it is the length of whatever you’re slicing). Hence we can change
the entire upper left quadrant red with a single command:

>>> hat.screen.array[:4, :4] = Color('red')

We can omit both the start and end of a slice (by specifying “:”) to indicate
we want the entire length of whatever we’re slicing. For example, to draw a
couple of white lines next to our quadrant:

>>> hat.screen.array[:, 4] = Color('white')
>>> hat.screen.array[4, :] = Color('white')

We can also read the display as well as write to it. We can read individual
elements or slices, just as with writing:

>>> hat.screen.array[0, 0]
(1., 0., 0.)
>>> hat.screen.array[4, :]
ScreenArray([(1., 1., 1.), (1., 1., 1.), (1., 1., 1.), (1., 1., 1.),
 (1., 1., 1.), (1., 1., 1.), (1., 1., 1.), (1., 1., 1.)],
 dtype=[('r', '<f4'), ('g', '<f4'), ('b', '<f4')])

This means we can scroll our display by assigning a slice to another
(similarly shaped) slice. First we’ll take a copy of our display so we can get
it back later, then we’ll use a loop with a delay to slide our display left:

>>> original = hat.screen.array.copy()
>>> from time import sleep
>>> for i in range(8):
... hat.screen.array[:, :7] = hat.screen.array[:, 1:]
... sleep(0.1)
...

Neat as that was, the screen object actually has several methods to make
animations like this easy. Let’s slide our original back onto the display:

>>> hat.screen.slide_to(original, direction='right')

We can construct images for the display with the array() function. Let’s
construct a blue screen (thankfully not of death!) and fade to it:

>>> blue_screen = pisense.array(Color('blue'))
>>> hat.screen.fade_to(blue_screen)

The array() function can also be given a list of values to initialize
itself. This is particularly useful with Color aliases a
single letter long. For example, to draw a French flag on our display:

>>> B = Color('black')
>>> r = Color('red')
>>> w = Color('white')
>>> b = Color('blue')
>>> black_line = [B, B, B, B, B, B, B, B]
>>> flag_line = [B, b, b, w, w, r, r, B]
>>> flag = pisense.array(black_line * 2 + flag_line * 4 + black_line * 2)
>>> hat.screen.fade_to(flag)

Finally, if you’re familiar with the Pillow library (formerly PIL, the
Python Imaging Library) you can obtain a representation of the screen with the
image() method. You can draw on this with the facilities of
Pillow’s ImageDraw module then copy the result back to the Sense
HAT’s screen with the draw() method (the image returned
doesn’t automatically update the screen when modified, unlike the array
representation):

>>> flag_img = hat.screen.image()
>>> from PIL import Image, ImageFilter
>>> blur_img = flag_img.filter(ImageFilter.GaussianBlur(1))
>>> hat.screen.draw(blur_img)

2.4. The Joystick

[image: _images/highlight_stick.svg]

The miniature joystick at the bottom right of the Sense HAT is exceedingly
useful as a basic interface for Raspberry Pis without a keyboard. The joystick
actually emulates a keyboard (which in some circumstances is useful and in
others, very annoying) but it’s simpler to use the library’s facilities to read
the joystick rather than trying to treat it as a keyboard. The
read() method can be used to wait for an event from the
joystick. Type the following then briefly tap the joystick to the right:

>>> hat.stick.read()
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 22, 52, 35, 961776),
direction='right', pressed=True, held=False)

As you’ve released the joystick there should be a “not pressed” event waiting
to be retrieved. Notice that its timestamp is shortly after the former event
(because the timestamp is the time at which the event occurred, not when it
was retrieved):

>>> hat.stick.read()
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 22, 52, 36, 47511),
direction='right', pressed=False, held=False)

The read() method can also take a timeout value (measured in
seconds). If an event has not occurred before the timeout elapses, it will
return None:

>>> print(repr(hat.stick.read(1.0)))
None

The event is returned as a namedtuple() with the following
fields:

	timestamp – the timestamp at which the event occurred.

	direction – the direction in which the joystick was pushed. If the
joystick is pushed inwards this will be “enter” (as that’s the key that it
emulates).

	pressed – this will be True if the event occurred due to the
joystick being pressed or held in a particular direction. If this is
False, the joystick has been released from the specified direction.

	held – when True the meaning of this field depends on the
pressed field:

	When pressed is also True this indicates that the event is a repeat
event occurring because the joystick is being held in the specified
direction.

	When pressed is False this indicates that the joystick has been
released but it was held down (this is useful for distinguishing between
a press and a hold during the release event).

Hence a typical sequence of events when briefly pressing the joystick right
would be:

	direction

	pressed

	held

	right

	True

	False

	right

	False

	False

However, when holding the joystick right, the sequence would be:

	direction

	pressed

	held

	right

	True

	False

	right

	True

	True

	right

	True

	True

	right

	True

	True

	right

	True

	True

	right

	False

	True

Finally, the joystick can be treated as an iterator which yields events
whenever they occur. This is particularly useful for driving interfaces as
we’ll see in later sections. For now, you can try this on the command line:

>>> for event in hat.stick:
... print(repr(event))
...
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 10, 845258), direction='right', pressed=True, held=False)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 100073), direction='right', pressed=True, held=True)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 150078), direction='right', pressed=True, held=True)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 200125), direction='right', pressed=True, held=True)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 250146), direction='right', pressed=True, held=True)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 300088), direction='right', pressed=True, held=True)
StickEvent(timestamp=datetime.datetime(2018, 5, 4, 20, 6, 11, 316964), direction='right', pressed=False, held=True)
^C

Note

You’ll probably see several strange sequences appear on the terminal when
playing with this (like ^[[A, ^[[B, etc). These are the raw control
codes for the cursor keys and can be ignored. Press Ctrl-c when you
want to terminate the loop.

2.5. Environmental Sensors

[image: _images/highlight_environ.svg]

The environmental sensors on the Sense HAT consist of two components: a
pressure sensor and a humidity sensor. Both of these components are also
capable of measuring temperature. For the sake of simplicity, both sensors are
wrapped in a single item in pisense which can be queried for pressure,
humidity, or temperature:

>>> hat.environ.pressure
1025.3486328125
>>> hat.environ.humidity
51.75486755371094
>>> hat.environ.temperature
29.045833587646484

The pressure is returned in millibars (which are equivalent to
hectopascals). The humidity is given as a relative humidity percentage.
Finally, the temperature is returned in celsius.

Despite there being effectively two temperature sensors there’s only a single
temperature property. By default it returns the reading from the humidity
sensor, but you change this with the temp_source
attribute:

>>> hat.environ.temp_source
<function temp_humidity at 0x7515b588>
>>> hat.environ.temp_source = pisense.temp_pressure
>>> hat.environ.temperature
29.149999618530273
>>> hat.environ.temp_source = pisense.temp_humidity
>>> hat.environ.temperature
25.24289321899414

Note that both temperature readings can be quite different! You can also
configure it to take the average of the two readings:

>>> hat.environ.temperature_source = pisense.temp_average
27.206080436706543

However, if you think this will give you more accuracy, I’d recommend referring
to Dilbert first!

Like the joystick, the environment sensor(s) can also be treated as an
iterator:

>>> for reading in hat.environ:
... print(repr(reading))
...
EnvironReadings(pressure=1025.41, humidity=51.1534, temperature=27.1774)
EnvironReadings(pressure=1025.41, humidity=50.9851, temperature=27.2261)
EnvironReadings(pressure=1025.41, humidity=50.9851, temperature=27.2271)
EnvironReadings(pressure=1025.42, humidity=50.9851, temperature=27.2240)
EnvironReadings(pressure=1025.42, humidity=50.9209, temperature=27.2240)
EnvironReadings(pressure=1025.42, humidity=50.9209, temperature=27.2230)
EnvironReadings(pressure=1025.42, humidity=50.9209, temperature=27.2261)
EnvironReadings(pressure=1025.42, humidity=50.9209, temperature=27.2271)
EnvironReadings(pressure=1025.42, humidity=51.0693, temperature=27.2331)
^C

Note

As above, press Ctrl-c when you want to terminate the loop.

A simple experiment you can run is to breathe near the humidity sensor and then
query its value. You should see the value rise quite rapidly before it slowly
falls back down as the vapour you exhaled evaporates from the surface of the
sensor.

2.6. Inertial Measurement Unit (IMU)

[image: _images/highlight_imu.svg]

The Inertial Measurement Unit (IMU) on the Sense HAT actually consists of
three different sensors (an accelerometer, a gyroscope, and a
magnetometer) each of which provide three readings (X, Y, and Z). This is
why you may also hear the sensor referred to as a 9-DoF (9 Degrees of Freedom)
sensor; it returns 9 independent values.

You can read values from the sensors independently:

>>> hat.imu.accel
IMUVector(x=0.0404885, y=0.0551139, z=1.01719)
>>> hat.imu.gyro
IMUVector(x=0.044841, y=0.00200727, z=-0.0528594)
>>> hat.imu.compass
IMUVector(x=-21.1644, y=-12.2358, z=18.4494)

The accelerometer returns values in g (standard gravities, equivalent to
9.80665m/s²). Hence, with the Sense HAT lying flat on a table, the X and Y
values of the accelerometer should be close to zero, while the Z value should
be close to 1 (because gravity is a constant acceleration force toward the
center of the Earth … assuming that you’re on Earth, that is).

The gyroscope returns values in radians per second. With the Sense HAT lying
stationary all values should be close to zero. If you wish to test the
gyroscope, set the console to continually print values and slowly rotate the
HAT:

>>> while True:
... print(hat.imu.gyro)
... sleep(0.1)
...
IMUVector(x=0.0437177, y=0.00241541, z=-0.0463548)
IMUVector(x=0.0408809, y=0.00207451, z=-0.0443745)
IMUVector(x=0.0428965, y=0.00294054, z=-0.0448299)
IMUVector(x=0.0376711, y=0.00259082, z=-0.0440765)
IMUVector(x=0.0376385, y=0.00705177, z=-0.0457381)
IMUVector(x=0.0276967, y=-0.00117483, z=-0.0446691)
IMUVector(x=-0.206876, y=-0.0201117, z=-0.128358)
IMUVector(x=-0.0773721, y=-0.523465, z=-0.318948)
IMUVector(x=-0.429841, y=-0.663047, z=0.0814746)
IMUVector(x=0.288231, y=-1.13005, z=-0.0245105)
IMUVector(x=-0.450611, y=-1.86431, z=-0.382783)
IMUVector(x=-0.173889, y=-1.05461, z=-0.238619)
IMUVector(x=-0.225202, y=-2.61934, z=-0.0840699)
IMUVector(x=-0.00529005, y=-1.86309, z=-0.000686785)
IMUVector(x=-0.00254116, y=-1.85271, z=0.115072)
IMUVector(x=-0.0382768, y=-0.26965, z=-0.374536)

Note

As above, press Ctrl-c when you want to terminate the loop.

Finally, the magnetometer returns values in µT (micro-Teslas, where 1µT is
equal to 10mG or milli-Gauss). The Earth’s magnetic field is incredibly
weak, so if you wish to test the magnetometer it is easier to do so with a
permanent magnet, especially something strong like a small neodymium magnet.
Bringing such a magnet within 10cm of the HAT should provoke an obvious
reaction in the readings.

The readings from these three components are combined by the underlying library
to form a composite “orientation” reading which provides the roll, pitch, and
yaw of the HAT in radians:

>>> hat.imu.orient
IMUOrient(roll=0.868906 (49.8°), pitch=1.2295 (70.4°), yaw=0.818843 (46.9°))

Note that while the representation of the reading includes degree conversions
for the sake of convenience, the reading returned by querying the properties is
always in radians (you can convert to degrees with the built-in function
math.degrees()).

>>> for state in hat.imu:
... print(repr(state))
...
IMUState(compass=IMUVector(x=-13.9255, y=-30.4649, z=-18.815), gyro=IMUVector(x=0.0393031, y=0.00371209, z=-0.0437528), accel=IMUVector(x=0.0409734, y=0.0517148, z=1.00427), orient=IMUOrient(roll=2.17333 (124.5°), pitch=-1.18527 (-67.9°), yaw=2.81119 (161.1°)))
IMUState(compass=IMUVector(x=-19.879, y=-29.4562, z=-7.37771), gyro=IMUVector(x=0.040144, y=-0.00145538, z=-0.0430174), accel=IMUVector(x=0.0431554, y=0.0495297, z=1.00939), orient=IMUOrient(roll=2.09063 (119.8°), pitch=-1.15771 (-66.3°), yaw=2.85458 (163.6°)))
IMUState(compass=IMUVector(x=-19.879, y=-29.4562, z=-7.37771), gyro=IMUVector(x=0.040144, y=-0.00145538, z=-0.0430174), accel=IMUVector(x=0.0431554, y=0.0495297, z=1.00939), orient=IMUOrient(roll=2.09063 (119.8°), pitch=-1.15771 (-66.3°), yaw=2.85458 (163.6°)))
IMUState(compass=IMUVector(x=-19.879, y=-29.4562, z=-7.37771), gyro=IMUVector(x=0.040144, y=-0.00145538, z=-0.0430174), accel=IMUVector(x=0.0431554, y=0.0495297, z=1.00939), orient=IMUOrient(roll=2.09063 (119.8°), pitch=-1.15771 (-66.3°), yaw=2.85458 (163.6°)))
IMUState(compass=IMUVector(x=-19.879, y=-29.4562, z=-7.37771), gyro=IMUVector(x=0.040144, y=-0.00145538, z=-0.0430174), accel=IMUVector(x=0.0431554, y=0.0495297, z=1.00939), orient=IMUOrient(roll=2.09063 (119.8°), pitch=-1.15771 (-66.3°), yaw=2.85458 (163.6°)))
IMUState(compass=IMUVector(x=-24.5605, y=-28.5779, z=1.99134), gyro=IMUVector(x=0.0379679, y=0.00247297, z=-0.0392915), accel=IMUVector(x=0.0421856, y=0.0500153, z=1.01597), orient=IMUOrient(roll=2.01459 (115.4°), pitch=-1.13169 (-64.8°), yaw=2.89324 (165.8°)))
IMUState(compass=IMUVector(x=-24.5605, y=-28.5779, z=1.99134), gyro=IMUVector(x=0.0379679, y=0.00247297, z=-0.0392915), accel=IMUVector(x=0.0421856, y=0.0500153, z=1.01597), orient=IMUOrient(roll=2.01459 (115.4°), pitch=-1.13169 (-64.8°), yaw=2.89324 (165.8°)))
IMUState(compass=IMUVector(x=-24.5605, y=-28.5779, z=1.99134), gyro=IMUVector(x=0.0379679, y=0.00247297, z=-0.0392915), accel=IMUVector(x=0.0421856, y=0.0500153, z=1.01597), orient=IMUOrient(roll=2.01459 (115.4°), pitch=-1.13169 (-64.8°), yaw=2.89324 (165.8°)))
IMUState(compass=IMUVector(x=-24.5605, y=-28.5779, z=1.99134), gyro=IMUVector(x=0.0379679, y=0.00247297, z=-0.0392915), accel=IMUVector(x=0.0421856, y=0.0500153, z=1.01597), orient=IMUOrient(roll=2.01459 (115.4°), pitch=-1.13169 (-64.8°), yaw=2.89324 (165.8°)))

2.7. Further Reading

This concludes the tour of the Raspberry Pi Sense HAT, and of the bare
functionality of the pisense library. The next sections will introduce some
simple projects to give you an idea of how the library can be used to combine
these facilities to useful or fun effect!

3. Simple Demos

To get us warmed up before we attempt some complete applications, here’s some
simple demos that use the functionality of the Sense HAT. Along with some demos
there’s a small exercise, which you might like to try if you want to hone your
skills with the library.

3.1. Rainbow Scroller

There are many different color systems, and the colorzero library that
pisense relies upon implements several, including HSV (Hue, Saturation, Value).
In this scheme, hue is essentially cyclic. This makes it quite easy to produce
a scrolling rainbow display. We’ll construct an 8x8 array in which the hue of a
color depends on the sum of its X and Y coordinates divided by 14 (as the
maximum sum is 7 + 7), which will give us a nice range of hues. You can try
this easily from the command line:

>>> from pisense import SenseHAT, array
>>> from colorzero import Color
>>> hat = SenseHAT()
>>> rainbow = array([
... Color(h=(x + y) / 14, s=1, v=1)
... for x in range(8)
... for y in range(8)
...])
>>> hat.screen.array = rainbow

At this point you should have a nice rainbow on your display. How do we make
this scroll? We simply construct a loop that increments the hue a tiny amount
each time round. For example:

examples/rainbow.py

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array
from colorzero import Color
from time import sleep

hat = SenseHAT()
offset = 0.0
while True:
 rainbow = array([
 Color(h=(x + y) / 14 + offset, s=1, v=1)
 for x in range(8)
 for y in range(8)
])
 hat.screen.array = rainbow
 offset += 0.05
 sleep(0.05)

3.2. Joystick Movement

In this demo we’ll move a dot around the screen in response to joystick moves.
The easiest way to interact with the joystick is to treat it as an iterator
(treating it as if it’s a rather slow list that only provides another value
when something happens to the joystick). Most of the time you’re not that
interested in the joystick events themselves, but rather on what they mean to
your application.

Hence our first step is to define a generator function that transforms joystick
events into relative X, Y movements:

def movements(events):
 for event in events:
 if event.pressed:
 try:
 yield {
 'left': (-1, 0),
 'right': (1, 0),
 'up': (0, -1),
 'down': (0, 1),
 }[event.direction]
 except KeyError:
 break # enter exits

You can try this out from the command line like so:

>>> hat = SenseHAT()
>>> for x, y in movements(hat.stick):
... print('x:', x, 'y:', y)
...
x: 1 y: 0
x: 1 y: 0
x: 0 y: 1
x: 0 y: 1
x: -1 y: 0

Note

You may see several control characters like ^[[C and ^[[D appearing
as you play with this. These are the raw characters that represent the
cursor keys; this output can be ignored. Press the joystick in (generate
an “enter” event) when you want to terminate the loop.

Now, we’ll define another simple generator that transforms these into arrays
for the display. Finally, we’ll use that output to drive the display:

examples/joystick_dot.py

from pisense import SenseHAT, array
from colorzero import Color

def movements(events):
 for event in events:
 if event.pressed:
 try:
 yield {
 'left': (-1, 0),
 'right': (1, 0),
 'up': (0, -1),
 'down': (0, 1),
 }[event.direction]
 except KeyError:
 break # enter exits

def arrays(moves):
 a = array(Color('black')) # blank screen
 x = y = 3
 a[y, x] = Color('white')
 yield a # initial position
 for dx, dy in moves:
 a[y, x] = Color('black')
 x = max(0, min(7, x + dx))
 y = max(0, min(7, y + dy))
 a[y, x] = Color('white')
 yield a
 a[y, x] = Color('black')
 yield a # end with a blank display

with SenseHAT() as hat:
 for a in arrays(movements(hat.stick)):
 hat.screen.array = a

This pattern of programming, treating inputs as iterators and writing a series
of transforms to produce screen arrays, will become a common theme in much of
the rest of this manual.

Exercise

Can you convert the rainbow demo above to use an iterable for its display?
Hint: the iterable doesn’t need to take any input because it’s not really
transforming anything, just yielding outputs.

3.3. Orientation Sensing

Could we adapt the joystick example to “roll” the dot around the screen using
the Inertial Measurement Unit (IMU)? Quite easily as it happens. The only thing
that needs to change is the transformation that yields the changes in the X and
Y positions. Instead of transforming joystick events, it needs to transform IMU
readings.

As it happens, the IMU’s accelerometer is perfect for this task. When the HAT
is tilted to the right, the X-axis of the accelerometer winds up pointing
downward, which means it starts reading close to 1 (due to gravity). The same
happens for the Y-axis when the HAT is tilted toward you. So, the
transformation is quite trivial:

	Grab the accelerometer’s X and Y axes

	Clamp the values to the range -1 to 1 (we don’t want things moving too
fast!)

	Round the values to the nearest integer (so we stay still until the HAT is
tilted quite a lot)

	Don’t bother yielding a movement unless one value is non-zero

	Introduce a short delay (with sleep()) because the IMU is
capable of spitting out readings hundreds of times a second, and we don’t
want the dot shooting around that fast!

Here’s the modified movements function:

def movements(imu):
 for reading in imu:
 delta_x = int(round(max(-1, min(1, reading.accel.x))))
 delta_y = int(round(max(-1, min(1, reading.accel.y))))
 if delta_x != 0 or delta_y != 0:
 yield delta_x, delta_y
 sleep(1/10)

Again, you can try this function out from the command line in the same manner
as the joystick; just pass the IMU component to it instead:

>>> from pisense import SenseHAT
>>> hat = SenseHAT()
>>> for x, y in movements(hat.imu):
... print('x:', x, 'y:', y)
...
x: 1 y: 0
x: 1 y: 0
x: 0 y: 1
x: 0 y: 1
x: -1 y: 0

Here’s the whole thing put together. Note that the only substantial change from
the joystick demo above is the movements function:

examples/imu_dot.py

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array
from colorzero import Color
from time import sleep

def movements(imu):
 for reading in imu:
 delta_x = int(round(max(-1, min(1, reading.accel.x))))
 delta_y = int(round(max(-1, min(1, reading.accel.y))))
 if delta_x != 0 or delta_y != 0:
 yield delta_x, delta_y
 sleep(1/10)

def arrays(moves):
 a = array(Color('black')) # blank screen
 x = y = 3
 a[y, x] = Color('white')
 yield a # initial position
 for dx, dy in moves:
 a[y, x] = Color('black')
 x = max(0, min(7, x + dx))
 y = max(0, min(7, y + dy))
 a[y, x] = Color('white')
 yield a
 a[y, x] = Color('black')
 yield a # end with a blank display

with SenseHAT() as hat:
 for a in arrays(movements(hat.imu)):
 hat.screen.array = a

Exercise

Can you combine the orientation demo with the rainbow scroller and make the
rainbow scroll in different directions based on the orientation of the
board?

3.4. Environment Sensing

How about a simple thermometer? We’ll treat the thermometer as an iterator, and
write a transform that produces a screen containing the temperature as both a
number (in a small font), and a very basic chart which lights more elements as
the temperature increases.

We’ll start with a function that takes a reading, limits it to the range of
temperatures we’re interested in (0°C to 50°C), and distributes that evenly
over the range 0 <= n < 64 (representing all 64 elements of the HAT’s display):

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Red
from time import sleep
import numpy as np

def thermometer(reading):
 t = max(0, min(50, reading.temperature)) / 50 * 64

Next, we need to construct the crude chart representing the temperature. For
this we call array() and pass it a list of 64 Color
objects which will be solid red if the element is definitely below the current
temperature, a scaled red for the element at the current temperature, and black
(off) if the element is above the current temperature. We also flip the result
as we want the chart to start at the bottom and work its way up:

 screen = array([
 Color('red') if i < int(t) else
 Color('red') * Red(t - int(t)) if i < t else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)

Next, we call draw_text() which will return us a small
Image object containing the rendered text (we’ve added some
padding at the bottom so the text is “top aligned”). We’ll convert that to an
array, and “add” that to the chart we’ve drawn (a simple method of overlaying)
and then clip the result to the range 0 to 1 (because where the text overlays
the chart we’ll probably exceed the bounds of the red channel):

 text = image_to_rgb(draw_text(str(int(round(reading.temperature))),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

Finally, here’s the whole thing put together:

examples/thermometer.py

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Red
from time import sleep
import numpy as np

def thermometer(reading):
 t = max(0, min(50, reading.temperature)) / 50 * 64
 screen = array([
 Color('red') if i < int(t) else
 Color('red') * Red(t - int(t)) if i < t else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(str(int(round(reading.temperature))),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

with SenseHAT() as hat:
 for reading in hat.environ:
 hat.screen.array = thermometer(reading)
 sleep(0.5)

You can test this script by running it, then placing your finger on the
humidity sensor (which is the sensor we’re using to read temperature). If the
ambient temperature is below about 24°C you should see the reading rise quite
quickly. Take your finger off the sensor and it should fall back down again.

Why, in this example, did we construct a function that took a single reading?
Why did we not pass the environ iterator to the thermometer function? Quite
simply because we didn’t have to: making an array for the screen works from a
single reading. It doesn’t have any need to know prior readings, or to keep
any state between frames, so it’s simplest to make it a straight-forward
function. That said…

Exercise

Can you change the script to show whether the temperature is rising or
falling? Hint: passing the iterator to the transform is one way to do this,
but for a neater way (without passing the iterator), look up pairwise
in itertools.

4. Project: Environment Monitor

Here’s our first “full” project for the Sense HAT: make an environmental
monitor that can display the temperature, humidity, and pressure in a variety
of forms. We’ve already seen a demo thermometer in Environment Sensing. First
we’ll construct variants of this for the humidity and pressure sensors. Then
we’ll combine all three into an application. Finally, we’ll add interactivity
using the joystick to select the required functionality, recording the data to
a database, and a trivial web interface.

4.1. Hygrometer

Firstly, let’s adapt our thermometer script for sensing humidity. Here’s the
thermometer script again:

examples/thermometer.py

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Red
from time import sleep
import numpy as np

def thermometer(reading):
 t = max(0, min(50, reading.temperature)) / 50 * 64
 screen = array([
 Color('red') if i < int(t) else
 Color('red') * Red(t - int(t)) if i < t else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(str(int(round(reading.temperature))),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

with SenseHAT() as hat:
 for reading in hat.environ:
 hat.screen.array = thermometer(reading)
 sleep(0.5)

We’ll use a very similar structure for our hygrometer. This time we don’t need
to clamp the range (we’ll use the full 0% to 100%, but we’ll scale it to 0 <= n
< 64 again). We’ll use a reasonably dark blue (“#000088” in HTML terms) for the
chart, but everything else should look fairly familiar:

examples/hygrometer.py

from __future__ import division # for py2.x compatibility
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Blue
from time import sleep
import numpy as np

def hygrometer(reading):
 h = reading.humidity / 100 * 64
 screen = array([
 Color('#008') if i < int(h) else
 Color('#008') * Blue(h - int(h)) if i < h else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text('^^' if reading.humidity > 99 else
 str(int(round(reading.humidity))),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

with SenseHAT() as hat:
 for reading in hat.environ:
 hat.screen.array = hygrometer(reading)
 sleep(0.5)

The one other subtle change is in the caption. We can’t fit “100” on our
display; it’s too wide (this wasn’t a problem for the thermometer where we
clamped the temperature range from 0°C to 50°C; if you guessed this was for
simplicity, you were right!). Instead, whenever the humidity is >99% we display
“^^” to indicate the maximum value.

Test this script out by running it and then breathing gently on the humidity
sensor. You should see the humidity reading rise rapidly (possibly to “^^”)
then slowly fall back down.

4.2. Barometer

Next we’ll tackle the pressure sensor. This will have a very familiar structure
by now:

	Clamp the pressure readings to a sensible range (in this case we’ll use
950mbar to 1050mbar).

	Scale this to the range 0 <= n < 64.

	Draw a rudimentary chart (we’ll use green to distinguish it from our
thermometer and hygrometer scripts).

	Draw the pressure as a number superimposed on the chart.

Oh dear, there’s a problem! All the valid pressure values are too large to fit
on the display, so we can’t use an easy hack like displaying “^^” as we did in
the hygrometer above.

It’d be nice if the pressure reading could scroll back and forth on the
display, still superimposed on the chart. It turns out, using iterators again,
this is actually quite easy to achieve. What we want is a sliding window over
our rendered text, like so:

[image: _images/sliding_window.svg]

Hence our first requirement is an infinite iterator which produces the
“bouncing” X offset for the sliding window:

def bounce(it):
 # bounce('ABC') --> A B C C B A A B C ...
 return cycle(chain(it, reversed(it)))

Well, that was simple!

The cycle() and chain() functions come from
the standard library’s fantastic itertools module which I urge anyone
using iterators to check out. The reversed() function is a standard
built-in function in Python.

How do we combine the offsets produced by bounce with the readings from the
sensor? We simply use the built-in zip() function:

examples/barometer.py

NB: this script is not compatible with py2.x
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Green
from time import sleep
from itertools import cycle, chain
import numpy as np

def bounce(it):
 # bounce('ABC') --> A B C C B A A B C ...
 return cycle(chain(it, reversed(it)))

def barometer(offset, reading):
 p = (max(950, min(1050, reading.pressure)) - 950) / 100 * 64
 screen = array([
 Color('green') if i < int(p) else
 Color('green') * Green(p - int(p)) if i < p else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(str(int(round(reading.pressure))),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 8, 3)))
 screen[:text.shape[0], :] += text[:, offset:offset + 8]
 return screen.clip(0, 1)

with SenseHAT() as hat:
 for offset, reading in zip(bounce(range(8)), hat.environ):
 hat.screen.array = barometer(offset, reading)
 sleep(0.2)

Note

This example will only work in Python 3 because it evaluates zip()
lazily. In Python 2, this will crash as zip attempts to construct a list
for an infinite iterator (use izip from itertools in Python 2).

Exercise

Can you adjust the hygrometer script so that it scrolls “100” when that is
the reading, but smaller values stay static on the display?

4.3. Combining Screens

We now have the three scripts that we want for our environmental monitor, but
how do we combine them into a single application? Our first step will be a
simple one: to make a function that will rotate between each of our
transformations periodically, first showing the thermometer for a few seconds,
then the hygrometer, then the barometer.

The easiest way to do this is to modify our thermometer and hygrometer
transforms to take a (useless) offset parameter just like the barometer
transform. Then (because our functions all now have a common prototype, and
functions are first class objects in Python) we can construct a
cycle() of transforms and just loop around them. The result
looks like this:

examples/monitor_auto.py

NB: this script is not compatible with py2.x
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Red, Green, Blue
from time import sleep
from itertools import cycle, chain
import numpy as np

def thermometer(offset, reading):
 t = max(0, min(50, reading.temperature)) / 50 * 64
 screen = array([
 Color('red') if i < int(t) else
 Color('red') * Red(t - int(t)) if i < t else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(int(round(reading.temperature)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

def hygrometer(offset, reading):
 h = reading.humidity / 100 * 64
 screen = array([
 Color('#008') if i < int(h) else
 Color('#008') * Blue(h - int(h)) if i < h else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text('^^' if reading.humidity > 99 else
 int(round(reading.humidity)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

def barometer(offset, reading):
 p = (max(950, min(1050, reading.pressure)) - 950) / 100 * 64
 screen = array([
 Color('green') if i < int(p) else
 Color('green') * Green(p - int(p)) if i < p else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(int(round(reading.pressure)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 8, 3)))
 screen[:text.shape[0], :] += text[:, offset:offset + 8]
 return screen.clip(0, 1)

def bounce(it):
 # bounce('ABC') --> A B C C B A A B C ...
 return cycle(chain(it, reversed(it)))

def switcher(readings):
 for transform in cycle((thermometer, hygrometer, barometer)):
 for offset, reading in zip(bounce(range(8)), readings):
 yield transform(offset, reading)
 sleep(0.2)

def main():
 with SenseHAT() as hat:
 for a in switcher(hat.environ):
 hat.screen.array = a

if __name__ == '__main__':
 main()

4.4. Interactivity!

Switching automatically between things is okay, but it would be nicer if we
could control the switching with the joystick. For example, we could lay out
our screens side-by-side with thermometer at the far left, then hygrometer,
then pressure at the far right, and when the user presses left or right we
could scroll between the displays.

To do this we just need to refine our switcher function so that it depends
on both the readings (which it will pass to whatever the current transformation
is), and events from the joystick.

def switcher(events, readings):
 screens = {
 (thermometer, 'right'): hygrometer,
 (hygrometer, 'left'): thermometer,
 (hygrometer, 'right'): barometer,
 (barometer, 'left'): hygrometer,
 }
 screen = thermometer
 for event, offset, reading in zip(events, bounce(range(8)), readings):
 yield screen(offset, reading)
 if event is not None and event.pressed:
 try:
 screen = screens[screen, event.direction]
 except KeyError:
 break
 sleep(0.2)

However, we have a problem: the joystick only yields events when something
happens so if we use this, our display will only update when the joystick emits
an event (because zip() will only yield a tuple of values when all
iterators it covers have each yielded a value).

Thankfully, there’s a simple solution: the SenseStick.stream attribute.
When this is set to True the joystick will immediately yield a value
whenever one is requested. If no event has occurred it will simply yield
None. So all our script needs to do is remember to set
SenseStick.stream to True at the start and everything will work
happily. Just to make the exit a bit prettier we’ll fade the screen to black
too:

def main():
 with SenseHAT() as hat:
 hat.stick.stream = True
 for a in switcher(hat.stick, hat.environ):
 hat.screen.array = a
 hat.screen.fade_to(array(Color('black')))

4.5. Finishing Touches

The fade is a nice touch, but it would be nicer if the screens would “slide”
between each other. And we’ve still got to add the database output too!

Thankfully this is all pretty easy to arrange. The main procedure is the
ideal place to handle transitions like fading and sliding; it just needs to be
told when to perform them. The switcher function can tell it when to do
this by yielding two values: the array to copy to the display, and the
transition animation to perform (if any). While we’re at it, we may as well
move the fade to black to the end of the loop in switcher.

def switcher(events, readings):
 screens = {
 (thermometer, 'right'): hygrometer,
 (hygrometer, 'left'): thermometer,
 (hygrometer, 'right'): barometer,
 (barometer, 'left'): hygrometer,
 }
 screen = thermometer
 for event, offset, reading in zip(events, bounce(range(8)), readings):
 anim = 'draw'
 if event is not None and event.pressed:
 try:
 screen = screens[screen, event.direction]
 anim = event.direction
 except KeyError:
 yield array(Color('black')), 'fade'
 break
 yield screen(offset, reading), anim
 sleep(0.2)

Now we enhance the main function to perform various transitions:

def main():
 with SenseHAT() as hat:
 hat.stick.stream = True
 for a, anim in switcher(hat.stick, hat.environ):
 if anim == 'fade':
 hat.screen.fade_to(a, duration=0.5)
 elif anim == 'right':
 hat.screen.slide_to(a, direction='left', duration=0.5)
 elif anim == 'left':
 hat.screen.slide_to(a, direction='right', duration=0.5)
 else:
 hat.screen.array = a

Finally, we did promise that we’re going to store the data in a database.
Ideally, we want a round-robin database for which we can use the excellent
rrdtool project (if you wish to understand the rrdtool calls below, I’d
strongly recommend reading its documentation). This provides all sorts of
facilities beyond just recording the data, including averaging it over
convenient time periods and producing good-looking charts of the data.

Note

Unfortunately, the Python 3 bindings for rrdtool don’t appear to be
packaged at the moment so we’ll need to install them manually. On Raspbian
you can do this like so:

$ sudo apt install rrdtool librrd-dev python3-pip
$ sudo pip3 install rrdtool

On other platforms the pip command will likely be similar, but the
pre-requisites installed with apt may well differ.

We’ll add a little code to construct the round-robin database if it doesn’t
already exist, then add a tiny amount of code to record readings into the
database. The final result (with the lines we’ve added highlighted) is as
follows:

examples/monitor_final.py

NB: this script is not compatible with py2.x
from pisense import SenseHAT, array, draw_text, image_to_rgb
from colorzero import Color, Red, Green, Blue
from time import time, sleep
from itertools import cycle, chain
import numpy as np
import io
import rrdtool

def thermometer(offset, reading):
 t = max(0, min(50, reading.temperature)) / 50 * 64
 screen = array([
 Color('red') if i < int(t) else
 Color('red') * Red(t - int(t)) if i < t else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(int(round(reading.temperature)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

def hygrometer(offset, reading):
 h = reading.humidity / 100 * 64
 screen = array([
 Color('#008') if i < int(h) else
 Color('#008') * Blue(h - int(h)) if i < h else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text('^^' if reading.humidity > 99 else
 int(round(reading.humidity)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 0, 3)))
 screen[:text.shape[0], :text.shape[1]] += text
 return screen.clip(0, 1)

def barometer(offset, reading):
 p = (max(950, min(1050, reading.pressure)) - 950) / 100 * 64
 screen = array([
 Color('green') if i < int(p) else
 Color('green') * Green(p - int(p)) if i < p else
 Color('black')
 for i in range(64)
])
 screen = np.flipud(screen)
 text = image_to_rgb(draw_text(int(round(reading.pressure)),
 'small.pil', foreground=Color('gray'),
 padding=(0, 0, 8, 3)))
 screen[:text.shape[0], :] += text[:, offset:offset + 8]
 return screen.clip(0, 1)

def bounce(it):
 # bounce('ABC') --> A B C C B A A B C ...
 return cycle(chain(it, reversed(it)))

def create_database(database):
 try:
 rrdtool.create(
 database, # Filename of the database
 '--no-overwrite', # Don't overwrite the file if it exists
 '--step', '5s', # Data will be fed at least every 5 seconds
 'DS:temperature:GAUGE:1m:-70:70', # Primary store for temperatures
 'DS:humidity:GAUGE:1m:0:100', # Primary store for humidities
 'DS:pressure:GAUGE:1m:900:1100', # Primary store for pressures
 'RRA:AVERAGE:0.5:5s:1d', # Keep 1 day's worth of full-res data
 'RRA:AVERAGE:0.5:5m:1M', # Keep 1 month of 5-minute-res data
 'RRA:AVERAGE:0.5:1h:1y', # Keep 1 year of hourly data
 'RRA:MIN:0.5:1h:1y', # ... including minimums
 'RRA:MAX:0.5:1h:1y', # ... and maximums
 'RRA:AVERAGE:0.5:1d:10y', # Keep 10 years of daily data
 'RRA:MIN:0.5:1d:10y', # ... including minimums
 'RRA:MAX:0.5:1d:10y', # ... and maximums
)
 except rrdtool.OperationalError:
 pass # file exists; ignore the error

def update_database(database, reading):
 data = 'N:{r.temperature}:{r.humidity}:{r.pressure}'.format(r=reading)
 rrdtool.update(database, data)

def switcher(events, readings, database='environ.rrd'):
 create_database(database)
 screens = {
 (thermometer, 'right'): hygrometer,
 (hygrometer, 'left'): thermometer,
 (hygrometer, 'right'): barometer,
 (barometer, 'left'): hygrometer,
 }
 screen = thermometer
 last_update = None
 for event, offset, reading in zip(events, bounce(range(8)), readings):
 anim = 'draw'
 if event is not None and event.pressed:
 try:
 screen = screens[screen, event.direction]
 anim = event.direction
 except KeyError:
 yield array(Color('black')), 'fade'
 break
 now = time()
 if last_update is None or now - last_update > 5:
 # Only update the database every 5 seconds
 last_update = now
 update_database(database, reading)
 yield screen(offset, reading), anim
 sleep(0.2)

def main():
 with SenseHAT() as hat:
 hat.stick.stream = True
 for a, anim in switcher(hat.stick, hat.environ):
 if anim == 'fade':
 hat.screen.fade_to(a, duration=0.5)
 elif anim == 'right':
 hat.screen.slide_to(a, direction='left', duration=0.5)
 elif anim == 'left':
 hat.screen.slide_to(a, direction='right', duration=0.5)
 else:
 hat.screen.array = a

if __name__ == '__main__':
 main()

Exercise

At the moment, it’s too easy to accidentally exit the script. Can you make
the application rotate around the screens (i.e. moving right from the
barometer screen takes the user back to the thermometer screen, and
vice-versa) and pressing the joystick is required to exit the application?

Finally, let’s whip up a little web-server that we can run alongside the Sense
HAT script to allow remote clients to query our environmental data and see some
pretty graphs of the history:

examples/monitor_server.py

import rrdtool
from http.server import HTTPServer, BaseHTTPRequestHandler
from datetime import datetime
from threading import Lock
from pathlib import PurePosixPath

class SensorData():
 def __init__(self, db):
 self._db = db
 self._data = rrdtool.lastupdate(db)
 self._images = {}

 @property
 def date(self):
 return self._data['date']

 def __format__(self, format_spec):
 element, units = format_spec.split(':')
 template = """
<div class="sensor">
 <h2>{title}</h2>
 {current:.1f}{units}

</div>
"""
 return template.format(
 element=element,
 title=element.title(),
 units=units,
 current=self._data['ds'][element])

 def image(self, path):
 try:
 image = self._images[path]
 except KeyError:
 # generate it
 p = PurePosixPath(path)
 try:
 element, duration = p.stem.split('_', 1)
 except ValueError:
 raise KeyError(path)
 start = {
 'recent': '1d',
 'history': '1M',
 }[duration]
 color = {
 'temperature': '#FF0000',
 'humidity': '#0000FF',
 'pressure': '#00FF00',
 }[element]
 self._images[path] = image = rrdtool.graphv(
 '-',
 '--imgformat', 'SVG',
 '--border', '0',
 '--color', 'BACK#00000000', # transparent
 '--start', 'now-' + start,
 '--end', 'now',
 'DEF:v={db}:{element}:AVERAGE'.format(db=self._db, element=element),
 'LINE2:v{color}'.format(color=color)
)['image']
 return image

class RequestHandler(BaseHTTPRequestHandler):
 database = 'environ.rrd'
 data = None
 index_template = """
<html>
 <head>
 <title>Sense HAT Environment Sensors</title>
 <link href="https://fonts.googleapis.com/css?family=Raleway" rel="stylesheet">
 <style>{style_sheet}</style>
 </head>
 <body>
 <h1>Sense HAT Environment Sensors</h1>
 <div id="timestamp">{data.date:%A, %d %b %Y %H:%M:%S}</div>
 {data:temperature:°C}
 {data:humidity:%RH}
 {data:pressure:mbar}
 <script>
 setTimeout(() => location.reload(true), 10000);
 </script>
 </body>
</html>
"""
 style_sheet = """
body {
 font-family: "Raleway", sans-serif;
 max-width: 700px;
 margin: 1em auto;
}

h1 { text-align: center; }

div {
 padding: 8px;
 margin: 1em 0;
 border-radius: 8px;
}

div#timestamp {
 font-size: 16pt;
 background-color: #bbf;
 text-align: center;
}

div.sensor { background-color: #ddd; }

div.sensor h2 {
 font-size: 20pt;
 margin-top: 0;
 padding-top: 0;
 float: left;
}

span.reading {
 font-size: 20pt;
 float: right;
 background-color: #ccc;
 border-radius: 8px;
 box-shadow: inset 0 0 4px black;
 padding: 4px 8px;
}
"""

 def get_sensor_data(self):
 # Keep a copy of the latest SensorData around for efficiency
 old_data = RequestHandler.data
 new_data = SensorData(RequestHandler.database)
 if old_data is None or new_data.date > old_data.date:
 RequestHandler.data = new_data
 return RequestHandler.data

 def do_HEAD(self):
 self.do_GET()

 def do_GET(self):
 if self.path == '/':
 self.send_response(301)
 self.send_header('Location', '/index.html')
 self.end_headers()
 elif self.path == '/index.html':
 data = self.get_sensor_data()
 content = RequestHandler.index_template.format(
 style_sheet=RequestHandler.style_sheet,
 data=data).encode('utf-8')
 self.send_response(200)
 self.send_header('Content-Type', 'text/html; charset=utf-8')
 self.send_header('Content-Length', len(content))
 self.send_header('Last-Modified', self.date_time_string(
 data.date.timestamp()))
 self.end_headers()
 self.wfile.write(content)
 elif self.path.endswith('.svg'):
 data = self.get_sensor_data()
 try:
 content = data.image(self.path)
 except KeyError:
 self.send_error(404)
 else:
 self.send_response(200)
 self.send_header('Content-Type', 'image/svg+xml')
 self.send_header('Content-Length', len(content))
 self.end_headers()
 self.wfile.write(content)
 else:
 self.send_error(404)

def main():
 httpd = HTTPServer(('', 8000), RequestHandler)
 httpd.serve_forever()

if __name__ == '__main__':
 main()

Run this alongside the monitor script, make sure your Pi is accessible on your
local network and then visit http://your-pis-address-here:8000/ in a
web-browser.

Note

We could have added this to the monitor script, but frankly there’s no
point as rrdtool includes all the locking we need to have something reading
the database while something else writes to it. This also ensures that a
bug in one script doesn’t affect the operation of the other, and means web
requests are far less likely to affect the operation of the Sense HAT
interface.

4.6. Auto-start

This is the sort of application it would be nice to start automatically upon
boot up. Thankfully, this is easy to arrange with a few systemd files.
Create the following under /etc/systemd/system/monitor_app.service:

examples/monitor_app.service

[Unit]
Description=An environment monitoring application
After=local-fs.target

[Service]
ExecStart=/usr/bin/python3 /home/pi/monitor_final.py
WorkingDirectory=/home/pi
User=pi

[Install]
WantedBy=multi-user.target

Note

You’ll need to modify the path for ExecStart to point to the location
of your monitor_final.py script. You may want to modify
WorkingDirectory too if you want the database to be stored in another
location.

Then for the web-service (if you want it), create the following under
/etc/systemd/system/monitor_web.service:

examples/monitor_web.service

[Unit]
Description=Web server for the environment monitoring application
After=local-fs.target network.target

[Service]
ExecStart=/usr/bin/python3 /home/pi/monitor_server.py
WorkingDirectory=/home/pi
User=pi

[Install]
WantedBy=multi-user.target

Note

Remember to modify ExecStart (and optionally WorkingDirectory) as
above.

Finally, inform systemd of the changes and tell it we want to start these new
services on boot-up as follows. For example, the following commands might be
used to achieve all of this:

$ cd /home/pi
$ nano monitor_app.service
$ nano monitor_web.service
$ sudo cp monitor_*.service /etc/systemd/system/
$ sudo systemctl daemon-reload
$ sudo systemctl enable monitor_app
$ sudo systemctl enable monitor_web

To start the services immediately:

$ sudo systemctl start monitor_app
$ sudo systemctl start monitor_web

To stop the services immediately:

$ sudo systemctl stop monitor_app
$ sudo systemctl stop monitor_web

If you want to disable these from starting at boot time you can simply run the
following commands:

$ sudo systemctl disable monitor_app
$ sudo systemctl disable monitor_web

Naturally, you could disable the web service but leave the main application
running too.

5. Project: Maze Game

Here’s another project for the Sense HAT that involves building a full maze
solving game. Initially this will be controlled with the joystick (because it’s
easier for debugging), but at the end we’ll switch to use the IMU to roll the
ball through the maze.

Let’s start at a high level and work our way down. We’ll construct the
application in the same manner as our earlier demos: a transformation of
inputs (initially from the joystick, later from the IMU) into a series of
screens to be shown on the display.

First some design points:

	The state of our maze can be represented as a large numpy array (larger than
the screen anyway) which we’ll slice to show on the display.

	We’ll need:

	a color to represent walls (white)

	a color to represent unvisited spaces (black)

	a color to represent visited spaces (green)

	a color to represent the player’s position (red)

	a color to represent the goal (yellow)

	We’ll also need:

	a function to generate the maze

	(possibly) a function to draw the generated maze as a numpy array

	a transformation to convert joystick events / IMU readings into X+Y motion

	a transformation to convert motions into new display states (essentially
this is the “game logic”)

	a function to render the display states including any requested animations
(just like in the final monitor script previously)

Let’s start from the “top level” and work our way down. First, the imports:

import numpy as np
import pisense as ps
from random import sample
from colorzero import Color
from time import sleep

Our “main” function will define the colors we need, call a function to generate
the maze, set up the motion transformation, the game transformation, and feed
all this to the display renderer:

def main():
 width = height = 8
 colors = {
 'unvisited': Color('black'),
 'visited': Color('green'),
 'wall': Color('white'),
 'ball': Color('red'),
 'goal': Color('yellow'),
 }
 with ps.SenseHAT() as hat:
 maze = generate_maze(width, height, colors)
 inputs = moves(hat.stick)
 outputs = game(maze, colors, inputs)
 display(hat.screen, outputs)

You may recall from our earlier demos (specifically Joystick Movement)
that we had a neat little function that converted joystick events into X and Y
delta values. Let’s copy that in next:

def moves(stick):
 for event in stick:
 if event.pressed:
 try:
 delta_y, delta_x = {
 'left': (0, -1),
 'right': (0, 1),
 'up': (-1, 0),
 'down': (1, 0),
 }[event.direction]
 yield delta_y, delta_x
 except KeyError:
 break

So far, this may look rather strange! What does it mean to call a generator
function like “moves” without a for loop? Quite simply: this creates an
instance of the generator but doesn’t start evaluating it until it’s used in a
loop. In other words nothing in the generator function will run … yet. The
same goes for the “game” function which will also be a generator, looping over
the movements yielded from “moves” and yielding screens for “display” to deal
with.

Speaking of “display”, that should be easy enough to deal with. It’ll be a
slightly expanded version of what we used in the previous monitor example with
additional cases for zooming and scrolling text:

def display(screen, states):
 try:
 for anim, data in states:
 if anim == 'fade':
 screen.fade_to(data)
 elif anim == 'zoom':
 screen.zoom_to(data)
 elif anim == 'show':
 screen.array = data
 elif anim == 'scroll':
 screen.scroll_text(data, background=Color('red'))
 else:
 assert False
 finally:
 screen.fade_to(ps.array(Color('black')))

Now onto the game logic itself. Let’s assume that the player always starts at
the top left (which will be (1, 1) given that (0, 0) will be an external wall)
and must finish at the bottom right. We’ll assume the maze generator handles
drawing the maze, including the goal, for us and we just need to handle drawing
the player’s position and updating where the player has been.

We’ll handle reacting to motion from the “moves” generator, preventing the
player from crossing walls (by checking the position they want to move to
doesn’t have the “wall” color), and noticing when they’ve reached the goal
(likewise by checking the color of the position they want to move to):

def game(maze, colors, moves):
 height, width = maze.shape
 y, x = (1, 1)
 maze[y, x] = colors['ball']
 left, right = clamp(x, width)
 top, bottom = clamp(y, height)
 yield 'fade', maze[top:bottom, left:right]
 for delta_y, delta_x in moves:
 if Color(*maze[y + delta_y, x + delta_x]) != colors['wall']:
 maze[y, x] = colors['visited']
 y += delta_y
 x += delta_x
 if Color(*maze[y, x]) == colors['goal']:
 yield from winners_cup()
 break
 else:
 maze[y, x] = colors['ball']
 left, right = clamp(x, width)
 top, bottom = clamp(y, height)
 yield 'show', maze[top:bottom, left:right]
 yield 'fade', ps.array(Color('black'))

In the function above we’ve assumed the existence of two extra functions:

	“clamp” which, given a position (either the user’s current X or Y coordinate)
and a limit (the width or height of the maze), returns the lower and upper
bounds we should display (on the fixed 8x8 LEDs).

	“winners_cup” which will provide some fancy “You’ve won!” sort of animation.
This is called with yield from which is equivalent to iterating over it
and yielding each result.

Let’s construct “clamp” first as it’s pretty easy:

def clamp(pos, limit, window=8):
 low, high = pos - window // 2, pos + window // 2
 if low < 0:
 high += -low
 low = 0
 elif high > limit:
 low -= high - limit
 high = limit
 return low, high

Now let’s code some fancy animation for a user that’s won. We’ll zoom in to a
golden cup on a red background, fade to red, and scroll “You win!” across the
display:

def winners_cup():
 r = Color('red')
 y = Color('yellow')
 W = Color('white')
 yield 'zoom', ps.array([
 r, r, W, y, y, y, r, r,
 r, r, W, y, y, y, r, r,
 r, r, W, y, y, y, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, W, y, y, y, r, r,
])
 sleep(2)
 yield 'fade', ps.array(r)
 yield 'scroll', 'You win!'

Note

Not all generator functions need a loop in them!

Nearly there … now we’ve just got to generate the maze. There’s lots of ways of
doing this but about the simplest is Kruskal’s Algorithm. Roughly speaking,
it works like this:

	Start off assuming the maze has walls between every cell on every side:

[image: _images/maze_init.svg]

	Construct a set of sets (S) each of which represents an individual cell, and
the set of walls between them (W). Below we represent a wall as a set
giving the cells it divides (there are more efficient representations, but
this is easier to visualize). Note that we are only interested in walls
dividing cells, not the exterior walls or walls that divide diagonally:

[image: \begin{aligned}S &= \{\{1\}, \{2\}, \{3\}, \{4\}\} \\ W &= \{\{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}\}\end{aligned}]

	Knock down a random wall where the cells either side of the wall don’t
belong to the same set in S, and union together the sets in S containing the
cells that have just been joined.

[image: \begin{aligned}S &= \{\{1, 3\}, \{2\}, \{4\}\} \\ W &= \{\{1, 2\}, \{2, 4\}, \{3, 4\}\}\end{aligned}]

[image: _images/maze_during.svg]

	Continue doing this until a single set remains in S, containing all cells.
At this point any cell must be reachable from any other cell and the maze is
complete; W will contain the set of walls that need to be rendered:

[image: \begin{aligned}S &= \{\{1, 2, 3, 4\}\} \\ W &= \{\{3, 4\}\}\end{aligned}]

[image: _images/maze_final.svg]

Here’s the implementation, with the actual drawing of the maze split out into
its own function:

def generate_maze(width, height, colors):
 walls = generate_walls(width, height)
 maze = ps.array(shape=(2 * height + 1, 2 * width + 1))
 maze[...] = colors['unvisited']
 maze[::2, ::2] = colors['wall']
 for a, b in walls:
 ay, ax = a
 by, bx = b
 y = 2 * by + 1
 x = 2 * bx + 1
 if ay == by:
 maze[y, x - 1] = colors['wall']
 else:
 maze[y - 1, x] = colors['wall']
 maze[0, :] = maze[:, 0] = colors['wall']
 maze[-1, :] = maze[:, -1] = colors['wall']
 maze[-2, -2] = colors['goal']
 return maze

def generate_walls(width, height):
 # Generate the maze with Kruskal's algorithm (there's better
 # choices, but this is a simple demo!)
 sets = {
 frozenset({(y, x)})
 for y in range(height)
 for x in range(width)
 }
 walls = set()
 for y in range(height):
 for x in range(width):
 if x > 0:
 # Add west wall
 walls.add(((y, x - 1), (y, x)))
 if y > 0:
 # Add north wall
 walls.add(((y - 1, x), (y, x)))
 for wall in sample(list(walls), k=len(walls)):
 # For a random wall, find the sets containing the adjacent cells
 a, b = wall
 set_a = set_b = None
 for s in sets:
 if {a, b} <= s:
 set_a = set_b = s
 elif a in s:
 set_a = s
 elif b in s:
 set_b = s
 if set_a is not None and set_b is not None:
 break
 # If the sets aren't the same, the cells aren't reachable;
 # remove the wall between them
 if set_a is not set_b:
 sets.add(set_a | set_b)
 sets.remove(set_a)
 sets.remove(set_b)
 walls.remove(wall)
 if len(sets) == 1:
 break
 assert len(sets) == 1
 assert sets.pop() == {
 (y, x)
 for y in range(height)
 for x in range(width)
 }
 return walls

At this point we should have a fully functioning maze game that looks quite
pretty. You can play it simply by running main(). Once you’ve verified it
works, it’s a simple matter to switch out the joystick for the IMU (in exactly
the same manner as in Simple Demos). Here’s the updated moves function
which queries the IMU instead of the joystick:

def moves(imu):
 for reading in imu:
 delta_x = int(round(max(-1, min(1, reading.accel.x))))
 delta_y = int(round(max(-1, min(1, reading.accel.y))))
 if delta_x != 0 or delta_y != 0:
 yield delta_y, delta_x
 sleep(1/10)

Finally, it would be nice to have the game run in a loop so that after the
winners screen it resets with a new maze. It would also be nice to launch the
script on boot so we can turn the Pi into a hand-held game. This is also simple
to arrange:

	We need to put an infinite loop in main to restart the game when it
finishes

	We need to add a signal handler to shut down the game nicely when systemd
tells it to stop (which it does by sending the SIGTERM signal; we can handle
this with some simple routines from the built-in signal module).

Here’s the final listing with the updated lines highlighted:

examples/maze_final.py

import numpy as np
import pisense as ps
from random import sample
from colorzero import Color
from time import sleep
from signal import signal, SIGTERM

def sigterm(signum, frame):
 raise SystemExit(0)

def main():
 signal(SIGTERM, sigterm)
 width = height = 8
 colors = {
 'unvisited': Color('black'),
 'visited': Color('green'),
 'wall': Color('white'),
 'ball': Color('red'),
 'goal': Color('yellow'),
 }
 with ps.SenseHAT() as hat:
 while True:
 maze = generate_maze(width, height, colors)
 inputs = moves(hat.imu)
 outputs = game(maze, colors, inputs)
 display(hat.screen, outputs)

def moves(imu):
 for reading in imu:
 delta_x = int(round(max(-1, min(1, reading.accel.x))))
 delta_y = int(round(max(-1, min(1, reading.accel.y))))
 if delta_x != 0 or delta_y != 0:
 yield delta_y, delta_x
 sleep(1/10)

def display(screen, states):
 try:
 for anim, data in states:
 if anim == 'fade':
 screen.fade_to(data)
 elif anim == 'zoom':
 screen.zoom_to(data)
 elif anim == 'show':
 screen.array = data
 elif anim == 'scroll':
 screen.scroll_text(data, background=Color('red'))
 else:
 assert False
 finally:
 screen.fade_to(ps.array(Color('black')))

def game(maze, colors, moves):
 height, width = maze.shape
 y, x = (1, 1)
 maze[y, x] = colors['ball']
 left, right = clamp(x, width)
 top, bottom = clamp(y, height)
 yield 'fade', maze[top:bottom, left:right]
 for delta_y, delta_x in moves:
 if Color(*maze[y + delta_y, x + delta_x]) != colors['wall']:
 maze[y, x] = colors['visited']
 y += delta_y
 x += delta_x
 if Color(*maze[y, x]) == colors['goal']:
 yield from winners_cup()
 break
 else:
 maze[y, x] = colors['ball']
 left, right = clamp(x, width)
 top, bottom = clamp(y, height)
 yield 'show', maze[top:bottom, left:right]
 yield 'fade', ps.array(Color('black'))

def generate_maze(width, height, colors):
 walls = generate_walls(width, height)
 maze = ps.array(shape=(2 * height + 1, 2 * width + 1))
 maze[...] = colors['unvisited']
 maze[::2, ::2] = colors['wall']
 for a, b in walls:
 ay, ax = a
 by, bx = b
 y = 2 * by + 1
 x = 2 * bx + 1
 if ay == by:
 maze[y, x - 1] = colors['wall']
 else:
 maze[y - 1, x] = colors['wall']
 maze[0, :] = maze[:, 0] = colors['wall']
 maze[-1, :] = maze[:, -1] = colors['wall']
 maze[-2, -2] = colors['goal']
 return maze

def generate_walls(width, height):
 # Generate the maze with Kruskal's algorithm (there's better
 # choices, but this is a simple demo!)
 sets = {
 frozenset({(y, x)})
 for y in range(height)
 for x in range(width)
 }
 walls = set()
 for y in range(height):
 for x in range(width):
 if x > 0:
 # Add west wall
 walls.add(((y, x - 1), (y, x)))
 if y > 0:
 # Add north wall
 walls.add(((y - 1, x), (y, x)))
 for wall in sample(list(walls), k=len(walls)):
 # For a random wall, find the sets containing the adjacent cells
 a, b = wall
 set_a = set_b = None
 for s in sets:
 if {a, b} <= s:
 set_a = set_b = s
 elif a in s:
 set_a = s
 elif b in s:
 set_b = s
 if set_a is not None and set_b is not None:
 break
 # If the sets aren't the same, the cells aren't reachable;
 # remove the wall between them
 if set_a is not set_b:
 sets.add(set_a | set_b)
 sets.remove(set_a)
 sets.remove(set_b)
 walls.remove(wall)
 if len(sets) == 1:
 break
 assert len(sets) == 1
 assert sets.pop() == {
 (y, x)
 for y in range(height)
 for x in range(width)
 }
 return walls

def clamp(pos, limit, window=8):
 low, high = pos - window // 2, pos + window // 2
 if low < 0:
 high += -low
 low = 0
 elif high > limit:
 low -= high - limit
 high = limit
 return low, high

def winners_cup():
 r = Color('red')
 y = Color('yellow')
 W = Color('white')
 yield 'zoom', ps.array([
 r, r, W, y, y, y, r, r,
 r, r, W, y, y, y, r, r,
 r, r, W, y, y, y, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, r, W, y, r, r, r,
 r, r, W, y, y, y, r, r,
])
 sleep(2)
 yield 'fade', ps.array(r)
 yield 'scroll', 'You win!'

if __name__ == '__main__':
 main()

Now to launch the game on boot, we’ll create a systemd service to execute it
under the unprivileged “pi” user. Copy the following into
/etc/systemd/system/maze.service:

examples/maze.service

[Unit]
Description=The Sense HAT Maze IMU game
After=local-fs.target

[Service]
ExecStart=/usr/bin/python3 /home/pi/maze_final.py
User=pi

[Install]
WantedBy=multi-user.target

Note

You’ll need to modify the path for ExecStart to point to the location
of your maze_final.py script.

Finally, run the following command line to enable the service on boot:

$ sudo systemctl enable maze

If you ever wish to stop the script running on boot:

$ sudo systemctl disable maze

6. Frequently Asked Questions (FAQ)

Feel free to ask the author, or add questions to the issue tracker on
GitHub, or even edit this document yourself and add frequently asked questions
you’ve seen on other forums!

6.1. Why?

To be rather blunt, I’m not a fan of the Sense HAT’s official API. This
probably sounds a bit strange coming from someone who played a small part in
making it (I wrote the joystick handling side of it, and later the desktop
Sense HAT emulator)! Originally pisense was my attempt, back when the Sense
HAT was relatively new, to design an API the way I wanted. It was a rough
experiment and I didn’t want to “pollute” the space by offering a competing API
to the official one, so I left it as just that: an experiment available from my
GitHub pages, but not properly documented, tested, or packaged.

Over the years, I’ve wanted to actually use the Sense HAT in a few applications
and each time I’ve tried, I’ve found myself frustrated by the inconsistencies
or short-comings in the official API. Eventually that came to a head and I
decided to pull pisense out of storage and polish it up for serious use (I
considered including it statically in applications I built, but that seemed
ugly).

To be clear: this is not an attempt to supplant the official API. If you’re a
teacher in education you’re almost certainly better off with the official API.
All the learning resources are built for it, the community support is there for
it, and it’s the only API accepted for the fabulous Astro Pi mission. Stop
reading this and go learn that one.

6.2. You still haven’t answered why…

All the teachers gone? Okay. I don’t want to put you off using the official
API, but here’s what I don’t like about it:

	It pulls in numpy as a dependency. So does pisense, but we actually use it
for more than rotating the display (seriously, that’s all the official API
uses it for). Why pull in numpy (a huge dependency) and then not use its
signature class (an n-dimensional array) for your two dimensional display?

	It pulls in PIL as a dependency. Again, so does pisense, but we use it for a
little more than a single method which just loads images for display. How
about presenting the display as a PIL image for manipulation? Or using the
drawing and scaling capabilities for animation? Font support for text
display? Oh, and our image conversions don’t rely on nested lists …

	Fixed width fonts for scrolling text? Urgh.

	The stick interface (yes, the one I wrote …) isn’t bad, but it’s not
great. The real stroke of genius in pisense (which sadly I can’t take
credit for: yet again, it was one of Ben Nuttall’s fabulous notions) was
separating held into its own value in the StickEvent tuple so
that release events can tell if the button was previously held.

	Everything is conflated into a single class (except the joystick) so if you
don’t want certain functionality: tough, you still have to deal with all the
initialization and memory usage for it (okay, that’s just a nitpick really).

	Tons of duplicated ways of doing things. I want the temperature; do I call
the get_temperature() method, or the get_temperature_from_humidity()
method, or query the temperature property, or the temp property?
Actually it doesn’t matter; they all do the same thing (call
get_temperature_from_humidity()).

	Several limitations in the API. I want both the raw accelerometer readings
(in g, because degrees really are useless for that) and the magnetometer
readings. The only way to do this is to query accel_raw and
compass_raw (or call their duplicated methods). However, under the covers
this causes two separate IMU reads with all the attendant overhead and
inconsistency that implies. There’s no way to get this set of data from a
single IMU read.

I’m not intending this to be the simplest interface to the Sense HAT. The
official API is probably easier to get going with. My feeling is that I’d
prefer an API that was a little harder to get started with if it allowed me
more scope to “get things done”.

6.3. Why are you using single precision floats in the display?!

Under the covers, the Sense HAT’s display framebuffer stores pixel information
in RGB565 format. That’s 5-bits for red and blue, and 6-bits for green. The
32-bit single-precision floating point format used in pisense still uses
23-bits for the mantissa; more than enough to represent the 5 or 6-bits of data
for each pixel.

Why not use RGB565 directly? We do: the SenseScreen.raw attribute
provides an array backed by the actual framebuffer in RGB565 format, if you
really want the fastest, lowest level access.

However, for ease of use I wanted the array format to be compatible with my
colorzero library, which meant using a floating point format. The smaller
the format, the more efficient the library as there’s less data to chuck around
and crunch (ideally I wanted it to perform reasonably on the smallest Pi
platforms like the old A+). During development, this library used the rather
obscure half-precision floating point format which is only 16-bits in size
(and provides 11-bits for the mantissa). However, hardware support for this
floating point format is only present on some Pi models and as best as I can
tell isn’t supported at all in Raspbian’s 32-bit userland. In tests, the single
precision format turned out to be the fastest so that’s what the library uses.

6.4. Why are orientation and gyroscopic values in radians, not degrees?

Firstly, there’s routines built into Python’s standard library for conversion
so this is trivial to achieve without the library duplicating it. However, the
more important reason is not to clutter the API with unnecessary attributes.

Degrees are probably simpler to look at as pure values, but they’re
considerably less useful to use in practice. This is because almost every
routine you are likely to use these values with (all trigonometric routines for
instance), only accept radians. This is why the repr() of the orientation
includes degree values (because they’re useful values to “eyeball”) but the
actual class doesn’t include such values.

If it did, I’d likely name them things like roll_degrees at which point
you’re typing almost as much as degrees(roll) anyway!

6.5. Can I use this with the Sense HAT emulator?

Yes; see the Sense HAT Emulator section.

7. Sense HAT Emulator

The pisense library is compatible with the desktop Sense HAT emulator,
however it uses a slightly different method of specifying that the emulator
should be used instead of the “real” HAT. You can construct the
SenseHAT class passing True as the value of the emulate
parameter:

from pisense import SenseHAT

hat = SenseHAT(emulate=True)

However, the default value of emulate is taken from an environment variable:
PISENSE_EMULATE. This means an even easier way (which doesn’t require
modifying your script at all) is to simply run your script after setting that
variable. For example:

$ python my_script.py # run on the "real" HAT
$ PISENSE_EMULATE=1 python my_script.py # run on the emulator

If you are going to be working with the emulator primarily (e.g. if you’re
not working on a Pi), you may wish to add the following line to your
~/.bashrc script so that all scripts default to using the emulator:

export PISENSE_EMULATE=1

If the emulator is not detected when SenseHAT is constructed, and
emulate is either True or defaults to True because of the environment
variable, the emulator will be launched.

Note

The emulator referred to here is the desktop Sense HAT emulator, not
the excellent online emulator developed by Trinket. Unfortunately as
pisense relies on both numpy and PIL, it’s unlikely pisense can be
easily ported to this.

8. Development

The main GitHub repository for the project can be found at:

https://github.com/waveform80/pisense

Anyone is more than welcome to open tickets to discuss bugs, new features, or
just to ask usage questions (I find this useful for gauging what questions
ought to feature in the FAQ, for example).

Even if you don’t feel up to hacking on the code, I’d love to hear suggestions
from people of what you’d like the API to look like!

8.1. Development installation

If you wish to develop pisense itself, it is easiest to obtain the source by
cloning the GitHub repository and then use the “develop” target of the Makefile
which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility, and links the Sense HAT’s customized RTIMULib into
your virtual environment if it can find it). The following example demonstrates
this method within a virtual Python environment:

$ sudo apt install lsb-release build-essential git git-core \
 exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv

After installing virtualenvwrapper you’ll need to restart your shell before
commands like mkvirtualenv will operate correctly. Once you’ve
restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 pisense
$ workon pisense
(pisense) $ git clone https://github.com/waveform80/pisense.git
(pisense) $ cd pisense
(pisense) $ make develop

To pull the latest changes from git into your clone and update your
installation:

$ workon pisense
(pisense) $ cd ~/pisense
(pisense) $ git pull
(pisense) $ make develop

To remove your installation, destroy the sandbox and the clone:

(pisense) $ deactivate
$ rmvirtualenv pisense
$ rm -fr ~/pisense

8.2. Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape
is used for conversion of SVGs to other formats, Graphviz is used for rendering
certain charts, and TeX Live is required for building PDF output. The following
command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
 texlive-fonts-recommended graphviz inkscape gnuplot

Once these are installed, you can use the “doc” target to build the
documentation:

$ workon pisense
(pisense) $ cd ~/pisense
(pisense) $ make doc

The HTML output is written to build/html while the PDF output goes to
build/latex.

8.3. Test suite

If you wish to run the pisense test suite, follow the instructions in
Development installation above and then make the “test” target within the sandbox:

$ workon pisense
(pisense) $ cd ~/pisense
(pisense) $ make test

A tox configuration is also provided that will test the library against all
supported Python and numpy versions. Be aware that this can take some
considerable time on first run (when the venvs are being created), even on a
fast machine. Subsequent runs will be quicker but you may wish to consider
using the “-p” option for parallelism:

$ workon pisense
(pisense) $ cd ~/pisense
(pisense) $ pip install tox
...
(pisense) $ tox -p auto

Measuring the extremes, on a reasonable Core i7 machine:

	An initial run, creating the venvs with no parallelism, takes >10 minutes.

	A subsequent run, re-using the existing venvs with the auto-parallel option
takes ~30 seconds.

You can expect your own tox runs to come in somewhere within the boundaries,
depending on the parameters you use, and whether or not you’re re-using
existing vens.

Note

If developing under Ubuntu, the `Dead Snakes PPA`_ is particularly useful
for obtaining additional Python installations for testing.

9. API - The Sense HAT

The pisense module is the main namespace for the pisense package; it
imports (and exposes) all publically accessible classes, functions, and
constants from all the modules beneath it for convenience. It also defines
the top-level SenseHAT class.

9.1. SenseHAT

	
class pisense.SenseHAT(settings='/etc/RTIMULib.ini', *, fps=15, easing=<function linear>, max_events=100, flush_input=True, emulate=None)

	An instance of this class represents the Sense HAT as a whole. It provides
attributes for objects that represent each component of the HAT, including:

	stick for the joystick

	screen for the display

	environ for the environmental sensors

	imu for the Inertial Measurement Unit (IMU)

The settings parameter can be used to point to alternate settings files
but it is strongly recommended you leave this at the default as this can
affect the calibration of the IMU. Other keyword arguments are used in the
initialization of the subordinate objects; see the documentation for their
classes for further information.

One particular keyword argument, emulate, takes its default from an
environment variable: PISENSE_EMULATE. If set, this must be an integer
number, typically 0 or 1 (0 is assumed if the variable is not set). This
argument indicates whether the instance should attach to the “real” Sense
HAT or the desktop Sense HAT emulator. The environment variable is
particularly useful as it means scripts can be tested against the emulator
without alteration. For example:

$ PISENSE_EMULATE=1 python examples/rainbow.py

Warning

Your script should not attempt to create more than one instance of this
class (given it represents a single piece of hardware). If you attempt
to do so a SenseHATReinit warning will be raised and the
existing instance will be returned.

	
close()

	Call the close() method to close the Sense HAT interface and free
up any background resources. The method is idempotent (you can call it
multiple times without error) and after it is called, any operations on
the Sense HAT may return an error (but are not guaranteed to do so).

	
environ

	Returns a SenseEnviron object representing the environmental
sensors on the Sense HAT.

	
imu

	Returns a SenseIMU object representing the Inertial
Measurement Unit (IMU) on the Sense HAT.

	
rotation

	Gets or sets the rotation (around the Z-axis) of the Sense HAT. When
querying this attribute, only the screen’s rotation is queried. When
set, the attribute affects the screen, joystick, and IMU.

	
screen

	Returns a SenseScreen object representing the Sense HAT’s
display.

	
settings

	Returns a SenseSettings object representing the Sense HAT’s
configuration settings.

	
stick

	Returns a SenseStick object representing the Sense HAT’s
joystick.

9.2. Warnings

	
exception pisense.SenseHATReinit

	Warning raised when the SenseHAT class is initialized twice (or more)

10. API - Screen

The screen interface is by far the most extensive and complex part of the
pisense library, comprising several classes and numerous functions to handle
representing the screen in a variety of conveniently manipulated formats, and
generation of slick animations. The two most important elements are the main
SenseScreen class itself, and the ScreenArray class which is
used to represent the contents of the display.

10.1. SenseScreen

	
class pisense.SenseScreen(fps=15, easing=<function linear>, emulate=False)

	The SenseScreen class represents the LED matrix on the Sense HAT.
Users can either instantiate this class themselves, or can access an
instance from SenseHAT.screen.

The two primary means of accessing and manipulating the screen are:

	The array attribute which returns a ScreenArray (a
customized numpy.ndarray). If the array is manipulated, it will
update the screen “live”.

	The image() and draw() methods. The former returns the
current state of the display as an 8x8 PIL Image,
while the latter updates the screen to display the provided image.

Attributes are provided to modify the rotation of the display, and
the gamma table. The hflip and vflip attributes can
be used to mirror the display horizontally and vertically. Finally, several
methods are provided for playing animations: slide_to(),
fade_to(), zoom_to(), and scroll_text() each of which
accept either image or array representations of the screen.

The fps parameter specifies the default frames per second for generation
and playback of animations (the default if unspecified is 15fps). The
easing parameter likewise specifies the default easing function for generation of animations. If the emulate parameter is
True, the instance will connect to the screen on the desktop Sense
HAT emulator instead of the “real” Sense HAT screen.

	
clear(fill=<Mock name='mock.Color()' id='139725949127816'>)

	Set all pixels in the display to the same fill color, which defaults
to black (off). fill can be a Color instance, or
anything that could be used to construct a Color
instance.

	
close()

	Call the close() method to close the screen interface and free
up any background resources. The method is idempotent (you can call it
multiple times without error) and after it is called, any operations on
the screen may return an error (but are not guaranteed to do so).

	
draw(image)

	Draw the provided image (or array) on the display.

The image passed to this method can be anything accepted by
buf_to_image(). The only restriction is that the result must be
an 8x8 image.

	
fade_to(image, duration=1, fps=None, easing=None)

	Smoothly fades the display from its current state to the provided
image (which can be anything compatible with draw()).

See the fade_to() function for more information on the meaning of
the parameters. This method simply calls that function with the current
state of the display (via image()) and the provided parameters,
and passes the result to play().

	
image()

	Return an 8x8 PIL Image representing the current
state of the display.

The image returned is a copy of the display’s state. Drawing on the
image will not update the display. Instead, it is recommended that
you perform whatever drawing you wish (e.g. with
ImageDraw), then call draw() with the image to update
the display.

	
play(frames)

	Play an animation on the display.

The frames provided to this method must be in one of the formats
accepted by the draw method; frames itself can be any
iterable, including a generator. Frames will be played back at a rate
governed by the fps attribute.

	
scroll_text(text, font='default.pil', size=8, foreground=<Mock name='mock.Color()' id='139725949127816'>, background=<Mock name='mock.Color()' id='139725949127816'>, direction='left', duration=None, fps=None)

	Renders text in the specified font and size, and scrolls the
result across the display.

See the scroll_text() function for more information on the
meaning of the parameters. This method simply calls that function with
the provided parameters, and passes the result to play().

	
slide_to(image, direction='left', cover=False, duration=1, fps=None, easing=None)

	Slide image (which can be anything compatible with draw()) over
the display in the specified direction.

See the slide_to() function for more information on the meaning
of the parameters. This method simply calls that function with the
current state of the display (via image()) and the provided
parameters, and passes the result to play().

	
wipe_to(image, direction='right', duration=1, fps=None, easing=None)

	Wipe image (which can be anything compatible with draw()) over
the display.

See the wipe_to() function for more information on the meaning
of the parameters. This method simply calls that function with the
current state of the display (via image()) and the provided
parameters, and passes the result to play().

	
zoom_to(image, center=(4, 4), direction='in', duration=1, fps=None, easing=None)

	Zoom the display in or out (specified by direction) to image (which
can be anything compatible with draw()).

See the zoom_to() function for more information on the meaning of
the parameters. This method simply calls that function with the current
state of the display (via image()) and the provided parameters,
and passes the result to play().

	
array

	Returns the screen as a ScreenArray (a customized
numpy.ndarray). The returned array is “live” and modifications
to it will modify the state of the screen. See ScreenArray
for more information on the usage and facilities of this class.

	
gamma

	Returns the gamma lookup table for the screen.

This property returns a 32-element array of integer values each of
which is in the range 0 to 31 (5-bits). This forms the “gamma table” of
the Sense HAT’s screen and is used to map intensities to their final
values on the screen.

Internally, the Sense HAT’s framebuffer uses 5-bits (values 0 to 31) to
represent each color. After a color’s Least significant bits have
been stripped to reduce it to 5-bits, the resulting value is then used
as an index into this list. The value obtained from this lookup will be
the final value used when lighting the corresponding LED.

Two “standard” gamma tables are provided: DEFAULT_GAMMA and
LOW_GAMMA which can be assigned directly to this property:

>>> import pisense
>>> hat = pisense.SenseHAT()
>>> hat.screen.gamma = pisense.LOW_GAMMA

Note

This property is designed to be assigned to in its entirety. The
list returned by it is not “live” (it is a copy of the actual gamma
table) and changing individual elements in it will not change the
gamma settings.

	
hflip

	When set to True the display will be mirrored horizontally.
Defaults to False.

	
raw

	Provides direct access to the Sense HAT’s RGB565 framebuffer.

This attribute returns a numpy ndarray containing 8x8
unsigned 16-bit integer elements, each of which represents a single
pixel on the display in RGB565 format (5-bits for red, 6-bits for
green, 5-bits for blue). Internally, the screen actually uses 5-bits
for all colors (the LSB of green is dropped); see gamma for
more information.

The array that is returned is built upon the framebuffer’s memory. In
other words, manipulating the array directly mainpulates the
framebuffer. As such, this property will not be affected by
hflip, vflip or rotation.

Note

Generally you should have no need to use this property. The
array attribute and image() method are far simpler to
work with.

	
rotation

	Specifies the rotation (really, the orientation) of the screen as a
multiple of 90 degrees.

When rotation is 0 (the default), Y is 0 near the GPIO pins and
increases towards the Raspberry Pi logo, while X is 0 near the notch at
the edge of the board and increases towards the joystick:

[image: _images/rotation_0.svg]When rotation is 90, Y is 0 near the notch at the edge of the board and
increases towards the joystick, while X is 0 near the Raspberry Pi
logo, and increases towards the GPIO pins:

[image: _images/rotation_90.svg]The other two rotations are trivial to derive from this.

Note

This property is updated by the unifying SenseHAT.rotation
attribute.

	
vflip

	When set to True the display will be mirrored vertically. Defaults
to False.

10.2. Animation functions

The following animation generator functions are used internally by the
animation methods of SenseScreen. They are also provided as separate
generator functions to permit users to build up complex sequences of
animations, or to aid in generating other effects like interspersing frames
with other sequences.

Each function is a generator function which yields an Image
for each frame of the animation.

	
pisense.draw_text(text, font='default.pil', size=8, foreground=<Mock name='mock.Color()' id='139725949127816'>, background=<Mock name='mock.Color()' id='139725949127816'>, padding=(0, 0, 0, 0), min_height=8)

	Renders the string text in the specified font and size, returning the
result as an Image.

The draw_text() function is useful for generating an
Image containing the specified text rendered in the
given font and size. The default font (default.pil) is a fixed
height, variable width font particularly suited to low resolution displays
like the Sense HAT (the font is limited to 5x7 grid).

One other specially made font (small.pil) is also provided which
limits itself to a 3x5 grid. It is less readable than default.pil but
can fit more on the display which can be useful in certain circumstances.
Other valid values for font are any TrueType or OpenType font installed
on the system. If the font is within the font search path, only the base
filename needs to be specified. For example:

>>> from pisense import *
>>> img = draw_text('Hello!', font='Piboto-Light.ttf')
>>> img.size
(20, 8)
>>> arr = array(img)
>>> arr.show()

 ██ ██ ██
██ ██ ██ ██ ██
██ ██ ██ ████ ██ ██ ████
██████████ ██████████ ██ ██ ████
██ ██ ██ ██ ██ ██ ██
██ ██ ████████ ██ ██████

As can be seen, when rendered small most TrueType and OpenType fonts don’t
look very good (although there are some exceptions), although they do look
“smoother” than shown above due to the anti-aliasing used. Here’s the
default font for comparison:

>>> img = draw_text('Hello!')
>>> img.size
(28, 8)
>>> arr = array(img)
>>> arr.show()

██ ██ ████ ████ ██
██ ██ ██ ██ ██
██ ██ ██████ ██ ██ ██████ ██
██████████ ██ ██ ██ ██ ██ ██ ██
██ ██ ██████████ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ ██ ██
██ ██ ██████ ██████ ██████ ██████ ██

The foreground and background parameters specify
Color instances for the text and background colors
respectively, which default to white text on a black background.

The padding parameter specifies the number of pixels of padding that
should be included in the resulting image. This is specified as a 4-tuple
of values representing the left, top, right, and bottom padding
respectively. The default is no padding.

Finally, the min_height parameter ensures the resulting image (including
padding) is guaranteed to be at least min_height pixels high. This
defaults to 8 and is a convenience for when you know you are working with a
smaller font (like default.pil or small.pil). It ensures that
horizontal slices of the result can be assigned to the display without
worrying about the vertical slicing.

	
pisense.fade_to(start, finish, duration=1, fps=15, easing=<function linear>)

	Generator function which yields a series of frames fading from the start
frame to the finish frame. Each frame will be a Image
with the same size as the start and finish frames (which must be the
same size).

The duration and fps parameters control how many frames will be yielded
by the function. The duration parameter measures the length of the
animation in seconds, while fps controls how many frames should be shown
per second. Hence, if duration is 1 (the default) and fps is 15 (the
default), the generator will yield 15 frames.

The easing parameter specifies a function which controls the progression
of the fade. See Easing functions for more information.

	
pisense.scroll_text(text, font='default.pil', size=8, foreground=<Mock name='mock.Color()' id='139725949127816'>, background=<Mock name='mock.Color()' id='139725949127816'>, direction='left', duration=None, fps=15)

	Generator function which yields a series of frames depicting text
scrolling in direction across the display. Each frame will be a
Image 8x8 pixels in size.

The text, font, size, foreground, and background parameters are
all equivalent to those in draw_text() (which is called to handle
rendering the text).

The direction parameter defaults to ‘left’ which results in the text
scrolling from the right-hand side of the display towards the left (the
typical direction for left-to-right languages). The value ‘right’ can also
be specified to reverse the scrolling direction.

The duration and fps parameters control how many frames will be yielded
by the function. The duration parameter measures the length of the
animation in seconds, while fps controls how many frames should be shown
per second. Hence, if duration is 2 and fps is 15, the
generator will yield 30 frames.

The default for duration is None indicating that the function should
determine the duration based on the length of the rendered text (in this
case fps is ignored). In this case the generator will produce frames
which scroll 1 pixel horizontally per frame.

The resulting animation will start with a full frame of background color;
the text will appear to scroll onto the display, and off again with the
final frame guaranteed to be another full frame of background color.

	
pisense.slide_to(start, finish, direction='left', cover=False, duration=1, fps=15, easing=<function linear>)

	Generator function which yields a series of frames depicting the finish
sliding onto the display, covering or displacing the start frame. Each
frame will be a Image with the same size as the start
and finish frames (which must be the same size).

The direction parameter controls which way the finish frame appears to
slide onto the display. It defaults to ‘left’ but can also be ‘right’,
‘up’, or ‘down’. If the cover parameter is False (the default), then
the start frame will appear to slide off the display in the same
direction. If cover is True, then the finish frame will slide over
the start frame appearing to cover it.

The duration and fps parameters control how many frames will be yielded
by the function. The duration parameter measures the length of the
animation in seconds, while fps controls how many frames should be shown
per second. Hence, if duration is 1 (the default) and fps is 15 (the
default), the generator will yield 15 frames.

The easing parameter specifies a function which controls the progression
of the fade. See Easing functions for more information.

	
pisense.wipe_to(start, finish, direction='right', duration=1, fps=15, easing=<function linear>)

	Generator function which yields a series of frames depicting the finish
frame gradually replacing the start frame. Each frame will be a
Image with the same size as the start and finish
frames (which must be the same size).

The direction parameter controls which way the finish frame appears
to replace the rows or columns of the start. It defaults to ‘right’ but
can also be ‘right’, ‘up’, or ‘down’.

The duration and fps parameters control how many frames will be yielded
by the function. The duration parameter measures the length of the
animation in seconds, while fps controls how many frames should be shown
per second. Hence, if duration is 1 (the default) and fps is 15 (the
default), the generator will yield 15 frames.

The easing parameter specifies a function which controls the progression
of the fade. See Easing functions for more information.

	
pisense.zoom_to(start, finish, center=(4, 4), direction='in', duration=1, fps=15, easing=<function linear>)

	Generator function which yields a series of frames depicting the finish
zooming to fill the display, with the start frame ballooning out of the
display or shrinking to a point. Each frame will be a
Image with the same size as the start and finish
frames (which must be the same size).

The direction parameter defaults to ‘in’ which means the finish frame
will start as a single point at the (x, y) coordinates given by center,
and will expand to fill the display. The direction can also be ‘out’ in
which case the start frame will shrink towards to the center point with
the finish frame appearing around the edges.

The duration and fps parameters control how many frames will be yielded
by the function. The duration parameter measures the length of the
animation in seconds, while fps controls how many frames should be shown
per second. Hence, if duration is 1 (the default) and fps is 15 (the
default), the generator will yield 15 frames.

The easing parameter specifies a function which controls the progression
of the fade. See Easing functions for more information.

10.3. Easing functions

The easing functions are used with the animation functions above for their
easing parameters.

An easing function must take a single integer parameter indicating the number
of frames in the resulting animation. It must return a sequence of (or
generator which yields) floating point values between 0.0 (which indicates the
start of the animation) and 1.0 (which indicates the end of the animation). How
fast the value moves from 0.0 to 1.0 dictates how fast the animation progresses
from frame to frame.

Several typical easing functions are provided by the library, but you are free
to use any function which complies which this interface. The default easing
function is always linear:

	
pisense.linear(steps)

	Linear easing function; yields steps values between 0.0 and 1.0.

[image: _images/linear.png]
This is the default easing function which simply progresses the animation
at a constant rate from start to finish.

	
pisense.ease_in(steps)

	Quadratic ease-in function; yields steps values between 0.0 and 1.0.

[image: _images/ease_in.png]
This function starts the animation off slowly, and builds speed as it
progresses, finishing abruptly.

	
pisense.ease_out(steps)

	Quadratic ease-out function; yields steps values between 0.0 and 1.0.

[image: _images/ease_out.png]
This function starts the animation suddenly and then eases it gradually
to a halt.

	
pisense.ease_in_out(steps)

	Quadratic ease-in-out function; yields steps values between 0.0 and 1.0.

[image: _images/ease_in_out.png]
This function starts the animation gradually, progresses rapidly at the
mid-point, and eases gently to a halt.

10.4. Gamma tables

Two built-in gamma tables are provided which can be assigned to
SenseScreen.gamma. However, you are free to use any compatible list of
32 values.

	
pisense.DEFAULT_GAMMA

	The default gamma table, which can be assigned directly to
gamma. The default rises in a steady curve from 0
(off) to 31 (full brightness).

	
pisense.LOW_GAMMA

	The “low light” gamma table, which can be assigned directly to
gamma. The low light table rises in a steady curve
from 0 (off) to 10.

11. API - Screen Arrays

This chapter covers the ScreenArray class, how it should be
constructed, how it can be used to manipulate the Sense HAT’s display, and how
to convert it to various different formats.

11.1. ScreenArray Class

	
class pisense.ScreenArray(shape=(8, 8))

	The ScreenArray class is a descendant of ndarray
with customizations to make working with the Sense HAT screen a little
easier.

In most respects, a ScreenArray will act like any other numpy
array. Exceptions to the normal behaviour are documented in the following
sections.

Instances of this class should not be created directly. Rather, obtain
the current state of the screen from the array
attribute of SenseHAT.screen or use the array() function to
create a new instance from a variety of sources (a PIL
Image, another array, a list of
Color instances, etc).

	
pisense.array(data=None, shape=(8, 8))

	Use this function to construct a new ScreenArray and fill it with
an initial source of data, which can be:

	A single Color. The resulting array will have the
specified shape.

	A list of Color values. The resulting array will have
the specified shape.

	An Image. The resulting array will have the shape
of the image (the shape parameter is ignored).

	Any compatible ndarray. In this case the shape of the
array is preserved (the shape parameter is ignored).

11.2. Display Association

If the ScreenArray instance was obtained from the
array attribute of SenseHAT.screen it will be
“associated” with the display. Manipulating the content of the array will
manipulate the appearance of the display on the Sense HAT:

>>> from pisense import *
>>> hat = SenseHAT()
>>> arr = hat.screen.array
>>> arr[0, 0] = (1, 0, 0) # set the top-left pixel to red

Copying an array that is associated with a display (via the
copy() method) breaks the association. This is a
convenient way to take a copy of the current display, fiddle around with it
without intermediate states displaying, and then update the display by copying
it back:

>>> from pisense import *
>>> hat = SenseHAT()
>>> arr = hat.screen.array.copy()
>>> arr[4:, :] = (1, 0, 1) # HAT's pixels are *not* changed (yet)
>>> hat.screen.array = arr # HAT's bottom pixels are changed to purple

Operations in numpy that create a new array will also break the display
association (e.g. adding two arrays together to create a new array; the new
array will not “derive” its display association from the original arrays).
However, operations that don’t create a new array (e.g. slicing,
flipping, etc.) will normally maintain the association. This is why you can
update portions of the display using slices.

11.3. Data Type

The data-type of the array is fixed and cannot be altered. Specifically the
data-type is a triple of single-precision floating point values between 0.0 and
1.0, labelled “r”, “g” and “b”. In other words, each element of the array is
a triple RGB value representing the color of a single pixel.

The 0.0 to 1.0 range of color values is not enforced. Hence if you add two
screen arrays together you may wind up with values greater than 1.0 or less
than 0.0 in one or more color planes. This is deliberate as intermediate values
exceeding this range can be useful in some calculations.

Hint

The numpy clip() method is a convenient way of
limiting values to the 0.0 to 1.0 range before updating the display.

11.4. Previews

While you can see the state of the HAT’s array visually, what about arrays that
you create separately with the array() function? For this, the
show() method is provided:

>>> from pisense import *
>>> arr = array(draw_text('Hello!'))
>>> arr.show()

██ ██ ████ ████ ██
██ ██ ██ ██ ██
██ ██ ██████ ██ ██ ██████ ██
██████████ ██ ██ ██ ██ ██ ██ ██
██ ██ ██████████ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ ██ ██
██ ██ ██████ ██████ ██████ ██████ ██
>>> arr.show('##', width=16, overflow='$')
 $
$
$
$
########## ##$
##$
##$
$
>>> arr[:8, :8].show()

██ ██
██ ██
██ ██ ██
██████████ ██
██ ██ ████
██ ██ ██
██ ██ ██

Note that the method is not limited to the size of the Sense HAT’s screen,
which makes it useful for previewing constructions that you intend to slice for
display later.

	
ScreenArray.show(element='\u2588\u2588', colors=None, width=None, overflow='\u00BB')

	Print a preview of the screen to the console.

The element parameter specifies the string used to represent each
element of the display. This defaults to “██” (two Unicode full block
drawing characters) which is usually sufficient to provide a fairly
accurate representation of the screen.

The colors parameter indicates the sort of ANSI coding (if any) that
should be used to depict the colors of the display. The following
values are accepted:

	Value

	Description

	16m

	Use true-color ANSI codes capable of representing ≈16
million colors. This is the default if stdout is a
TTY. The default terminal in Raspbian supports this
style of ANSI code.

	256

	Use 256-color ANSI codes. Most modern terminals
(including Raspbian’s default terminal) support this
style of ANSI code.

	8

	Use old-style DOS ANSI codes, only capable of
representing 8 colors. There is rarely a need to
resort to this setting.

	0

	Don’t use ANSI color codes. Instead, any pixel values
with a brightness >25% (an arbitrary cut-off) will be
displayed, while darker pixels will be rendered as
spaces. This is the default if stdout is not a TTY.

The width parameter specifies the maximum width for the output. This
defaults to None which means the method will attempt to use the
terminal’s width (if this can be determined; if it cannot, then 80 will
be used as a fallback). Pixels beyond the specified width will be
excluded from the output, and a column of overflow strings will be
shown to indicate that horizontal truncation has occurred in the output.

11.5. Format Strings

Screen arrays can also be used in format strings to return the string that the
show() method would print. The format string specification
for screen arrays consists of colon-separated sections (in any order):

	A section prefixed with “e” specifies the string used to represent an
individual element of the display. This defaults to ██ (two filled Unicode
block characters, which usually represents the display fairly accurately),
and is equivalent to the element parameter of show().

	A section prefixed with “o” specifies the string used to represent horizontal
overflow (equivalent to the overflow parameter). When the string will be
longer than the specified width (or the terminal width if none is given), it
will be truncated and the overflow string displayed at the right.

	A section prefixed with “w” specifies the maximum width that the rendered
array can take up in character widths (equivalent to the width parameter).
Note that ANSI color codes (which render with zero width) will not count
towards this limit, so each line returned may be longer than the specified
width but shouldn’t render longer than this. The default is the width of
the terminal, if it can be detected, or 80 columns otherwise.

	A section prefixed with “c” specifies the style of ANSI color codes to use in
the output (equivalent to the colors parameter). If unspecified, full
true-color ANSI codes will be used if the terminal is detected to be a TTY.
Otherwise, no ANSI codes will be used and elements will only be rendered if
their lightness exceeds 1/4 (an arbitrary cut-off which seems to work
tolerably well in practice). See the show() method for
more information on valid values for this parameter.

Some examples of operation:

>>> from pisense import *
>>> arr = array(draw_text('Hello!'))
>>> print('{}'.format(arr))

██ ██ ████ ████ ██
██ ██ ██ ██ ██
██ ██ ██████ ██ ██ ██████ ██
██████████ ██ ██ ██ ██ ██ ██ ██
██ ██ ██████████ ██ ██ ██ ██ ██
██ ██ ██ ██ ██ ██ ██
██ ██ ██████ ██████ ██████ ██████ ██
>>> print('{:e#:c0}'.format(arr))

#
#
#
#
#
#
#
>>> print('{:e#:o$:w16}'.format(arr))
 $
$
$
$
$
$
$
###$
>>> print('{:e##:o$:w16}'.format(arr))
 $
$
$
$
########## ##$
##$
##$
$

Note

The last example demonstrates that elements will never be chopped in half
by the truncation; either a display element is included in its entirety or
not at all.

A more formal description of the format string specification for
ScreenArray would be as follows:

<format_spec> ::= <format_part> (":" <format_part>)*
<format_part> ::= (<elements> | <overflow> | <colors> | <width>)
<elements> ::= "e" <any characters except : or {}>+
<overflow> ::= "o" <any characters except : or {}>+
<colors> ::= "c" ("0" | "8" | "256" | "16m")
<width> ::= "w" <digit>+
<digit> ::= "0"..."9"

11.6. Format conversions

The following conversion functions are provided to facilitate converting
various inputs into something either easy to manipulate or easy to display on
the screen.

	
pisense.buf_to_image(buf)

	Converts buf to an RGB PIL Image. The buf parameter
can be any of the types accepted by buf_to_rgb888().

	
pisense.buf_to_rgb(buf)

	Converts buf to a 2-dimensional numpy ndarray containing
3-tuples of floats between 0.0 and 1.0 (in other words, the same format as
ScreenArray). The buf parameter can be any of the types accepted
by buf_to_rgb888().

	
pisense.buf_to_rgb888(buf)

	Converts buf to a 3-dimensional numpy ndarray containing
bytes (RGB888 format). The buf parameter can be any of the following
types:

	An PIL Image.

	An numpy ndarray with a compatible data-type (the 3-tuple
of floats used by ScreenArray, or simple bytes).

	A buffer of 192 bytes; each 3 bytes will be taken as RGB levels for
pixels, working across then down the display.

The last format is fixed size as a linear buffer has no shape and that is
the one size we can reasonably guess a shape for. However, the other
formats are not size limited.

11.7. Advanced conversions

The following conversion functions are used internally by pisense, and are
generally not required unless you want to work with SenseScreen.raw
directly, or you know exactly what formats you are converting between and want
to skip the overhead of the buf_to_* routines figuring out the input type.

	
pisense.image_to_rgb565(img)

	Convert img (an Image) to RGB565 format in an
ndarray with shape (8, 8).

	
pisense.rgb565_to_image(arr)

	Convert an ndarray in RGB565 format (unsigned 16-bit values
with 5 bits for red and blue, and 6 bits for green laid out
RRRRRGGGGGGBBBBB) to an Image.

	
pisense.image_to_rgb888(img)

	Convert img (an Image) to RGB888 format in an
ndarray with shape (8, 8, 3).

	
pisense.rgb888_to_image(arr)

	Convert an ndarray in RGB888 format (unsigned 8-bit
values in 3 planes) to an Image.

	
pisense.image_to_rgb(img)

	Convert img (an Image) to an ndarray
in RGB format (structured floating-point type with 3 values each between 0
and 1).

	
pisense.rgb_to_image(arr)

	Convert arr (an ndarray in RGB format, structured
floating-point type with 3 values each between 0 and 1) to an
Image.

	
pisense.rgb888_to_rgb565(arr, out=None)

	Convert an ndarray in RGB888 format (unsigned 8-bit values
in 3 planes) to an ndarray in RGB565 format (unsigned
16-bit values with 5 bits for red and blue, and 6 bits for green laid out
RRRRRGGGGGGBBBBB).

	
pisense.rgb565_to_rgb888(arr, out=None)

	Convert an ndarray in RGB565 format (unsigned 16-bit values
with 5 bits for red and blue, and 6 bits for green laid out
RRRRRGGGGGGBBBBB) to an ndarray in RGB888 format (unsigned
8-bit values in 3 planes).

	
pisense.rgb_to_rgb888(arr, out=None)

	Convert a numpy ndarray in RGB format (structured
floating-point type with 3 values each between 0 and 1) to RGB888 format
(unsigned 8-bit values in 3 planes).

	
pisense.rgb888_to_rgb(arr, out=None)

	Convert a numpy ndarray in RGB888 format (unsigned 8-bit
values in 3 planes) to RGB format (structured floating-point type with 3
values, each between 0 and 1).
1.

	
pisense.rgb_to_rgb565(arr, out=None)

	Convert a numpy ndarray in RGB format (structured
floating-point type with 3 values each between 0 and 1) to RGB565 format
(unsigned 16-bit values with 5 bits for red and blue, and 6 bits for green
laid out RRRRRGGGGGGBBBBB).

	
pisense.rgb565_to_rgb(arr, out=None)

	Convert a numpy ndarray in RGB565 format (unsigned 16-bit
values with 5 bits for red and blue, and 6 bits for green laid out
RRRRRGGGGGGBBBBB) to RGB format (structured floating-point type with 3
values each between 0 and 1).

12. API - Joystick

The joystick on the Sense HAT is an excellent tool for providing a user
interface on Pis without an attached keyboard. The SenseStick class
provides several different paradigms for programming such an interface:

	At its simplest, you can poll the state of the joystick with various
attributes like SenseStick.up.

	You can use event-driven programming by assigning handlers to attributes
like SenseStick.when_up.

	You can also treat the joystick like an iterable and write transformations
the convert events into other useful outputs.

12.1. SenseStick

	
class pisense.SenseStick(max_events=100, flush_input=True, emulate=False)

	The SenseStick class represents the joystick on the Sense HAT.
Users can either instantiate this class themselves, or can access an
instance from SenseHAT.stick.

The read() method can be called to obtain StickEvent
instances, or the instance can be treated as an iterator in which case
events will be yielded as they come in:

hat = SenseHAT()
for event in hat.stick:
 if event.pressed and not event.held:
 print('%s pressed!' % event.direction)

Alternatively, handler functions can be assigned to the attributes
when_up, when_down, when_left, when_right,
when_enter. The assigned functions will be called when any matching
event occurs.

Finally, the attributes up, down, left,
right, and attr:enter can be polled to determine the current
state of the joystick.

The rotation attribute can be modified to alter the orientation of
events, and the aforementioned attributes.

The max_events parameter controls the size of the internal queue used to
buffer joystick events. This defaults to 100 which should be more than
sufficient to ensure events are not lost. The flush_input parameter,
which defaults to True controls whether, when the instance is closed,
it attempts to flush the stdin of the owning terminal. This is useful as
the joystick also acts as a keyboard. On the command line, this can mean
that joystick movements (buffered during a script’s execution) can
inadvertently execute historical commands (e.g. Up a few times followed by
Enter).

Finally, if the emulate parameter is True, the instance will connect
to the joystick in the desktop Sense HAT emulator instead of the “real”
Sense HAT joystick.

	
close()

	Call the close() method to close the joystick interface and free
up any background resources. The method is idempotent (you can call it
multiple times without error) and after it is called, any operations on
the joystick may return an error (but are not guaranteed to do so).

	
read(timeout=None)

	Wait up to timeout seconds for another joystick event. If one occurs,
return it as a StickEvent, otherwise return None.

Note

Attempting to call this method when callbacks are assigned to
attributes like when_left will trigger a
SenseStickCallbackRead warning. This is because using the
callback mechanism causes a background thread to continually read
joystick events (removing them from the queue that read()
accesses). Mixing these programming styles can result in missing
events.

	
down

	Returns True if the joystick is currently pressed downward.

	
down_held

	Returns True if the joystick is currently held downward.

	
enter

	Returns True if the joystick is currently pressed inward.

	
enter_held

	Returns True if the joystick is currently held inward.

	
left

	Returns True if the joystick is currently pressed leftward.

	
left_held

	Returns True if the joystick is currently held leftward.

	
right

	Returns True if the joystick is currently pressed rightward.

	
right_held

	Returns True if the joystick is currently held rightward.

	
rotation

	Specifies the rotation (really, the orientation) of the joystick as a
multiple of 90 degrees. When rotation is 0 (the default), “up” is
toward the GPIO pins:

[image: _images/rotation_0.svg]When rotation is 90, “up” is towards the LEDs, and so on:

[image: _images/rotation_90.svg]The other two rotations are trivial to derive from this.

Note

This property is updated by the unifying SenseHAT.rotation
attribute.

	
stream

	When True, treating the joystick as an iterator will always yield
immediately (yielding None if no event has occurred). When
False (the default), the iterator will only yield when an event
has occurred.

Note

This property can be set while an iterator is active, but if the
current value is False, the iterator will wait indefinitely
for the next event before it will start returning None. It
is better to set this property prior to obtaining the iterator.

	
up

	Returns True if the joystick is currently pressed upward.

	
up_held

	Returns True if the joystick is currently held upward.

	
when_down

	The function to call when the joystick is moved downward.

	
when_enter

	The function to call when the joystick is pressed in or released.

	
when_left

	The function to call when the joystick is moved leftward.

	
when_right

	The function to call when the joystick is moved rightward.

	
when_up

	The function to call when the joystick is moved upward.

12.2. StickEvent

	
class pisense.StickEvent(timestamp, direction, pressed, held)

	Represents a joystick event as a namedtuple(). The
fields of the event are defined below:

	
timestamp

	A datetime object specifying when the event took
place. This timestamp is derived from the kernel event so it should be
accurate even when callbacks have taken time reacting to events. The
timestamp is a naive datetime object in local time.

	
direction

	A string indicating which direction the event pertains to. Can be one
of “up”, “down”, “leftʺ, “right”, or “enter” (the last event refers to
the joystick being pressed inward).

	
pressed

	A bool which is True when the event indicates that the joystick is
being pressed or held in the specified direction. When this is
False, the event indicates that the joystick has been released from
the specified direction.

	
held

	A bool which is True when the event indicates that the joystick
direction is currently held down (when pressed is also
True) or that the direction was previously held down (when
pressed is False buut held is still True).

12.3. Warnings

	
exception pisense.SenseStickBufferFull

	Warning raised when the joystick’s event buffer fills

	
exception pisense.SenseStickCallbackRead

	Warning raised when SenseStick.read() is called while callbacks are
active

13. API - Environment Sensors

The Sense HAT has two environment sensors: a humidity sensor and a pressure
sensor, which are exposed in the combined SenseEnviron class. This
provides readings as EnvironReadings tuples.

13.1. SenseEnviron

	
class pisense.SenseEnviron(settings=None, temp_source=<function temp_humidity>, emulate=False)

	The SenseEnviron class represents the suite of environmental
sensors on the Sense HAT. Users can either instantiate this class
themselves, or can access an instance from SenseHAT.environ.

The temperature, pressure, and humidity attributes
can be queried to read the current values from the sensors. Alternatively,
the instance can be treated as an iterator in which case readings will be
yielded as they are detected:

hat = SenseHAT()
for reading in hat.environ:
 print(reading.temperature)

Because both the pressure and humidity sensors contain a temperature
sensor, a source must be selected for the temperature reading. By default
this is from the pressure sensor only, but you can specify a function for
temperature_source which, given the two temperature readings
returns the reading you are interested in, or some combination there-of.

The settings parameter can be used to point to alternate settings files.
The temp_source parameter provides an initial value for the
temp_source attribute (this defaults to temp_humidity()). If
the emulate parameter is True, the instance will connect to the
environment sensors in the desktop Sense HAT emulator instead of the
“real” Sense HAT’s sensors.

	
close()

	Call the close() method to close the environmental sensor
interface and free up any background resources. The method is
idempotent (you can call it multiple times without error) and after it
is called, any operations on the environmental sensors may return an
error (but are not guaranteed to do so).

	
read()

	Return the current state of all environmental sensors as an
EnvironReadings tuple.

Note

This method will wait until the next set of readings are available,
and then return them. Hence it is suitable for use in a loop
without additional waits, although it may be simpler to simply
treat the instance as an iterator in that case.

This is in contrast to reading the pressure,
humidity, and temperature attributes which always
return immediately.

	
humidity

	Return the current humidity reading from the environmental sensors.
The humidity is measured as a % of relative humidity.

	
pressure

	Return the current pressure reading from the environmental sensors.
The pressure is measured in millibars (aka hectopascals).

	
temp_source

	Specify the conversion function for the temperature sensors.

The Sense HAT contains two temperature sensors, one in the humidity
sensor, and one in the pressure sensor. The temp_source
property contains the function that is used to determine how the
temperature is reported from the two sources. The function must take
two parameters (the readings from the humidity and pressure sensors
respectively) and can return whatever you wish to see as the value of
the temperature property (including a tuple of both
temperatures).

The default value is temp_humidity() which simply returns the
reading from the humidity sensor, discarding the the pressure sensor
reading.

Warning

You may be tempted to average the two readings under the assumption
that this will provide more accuracy. This is almost certainly not
the case!

	
temperature

	Return the current temperature reading from the environment sensors.
The temperature is measured in degrees celsius.

13.2. EnvironReadings

	
class pisense.EnvironReadings(pressure, humidity, temperature)

	A namedtuple() representing the readings from the
environmental sensors as a named 3-tuple containing the fields pressure
(in mbar or hPa), humidity (in %RH), and temperature (in °C)
respectively.

13.3. Temperature Configuration

	
pisense.temp_pressure(p_temp, h_temp)

	Use this function as temp_source if you want
to read temperature from the pressure sensor only.

	
pisense.temp_humidity(p_temp, h_temp)

	Use this function as temp_source if you want
to read temperature from the humidity sensor only. This is the default.

	
pisense.temp_average(p_temp, h_temp)

	Use this function as temp_source if you wish
to read the average of both the pressure and humidity sensor’s
temperatures.

	
pisense.temp_both(p_temp, h_temp)

	Use this function as temp_source if you wish
to return both the pressure and humidity sensor’s temperature readings as a
tuple from the temperature attribute.

14. API - Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) on the Sense HAT has myriad uses in all
sorts of projects from High Altitude Balloon (HAB) flights, robotics,
detecting magnetic fields, or making novel user interfaces. It is represented
in pisense by the SenseIMU class, and provides readings as
IMUState, IMUVector and IMUOrient tuples.

14.1. SenseIMU

	
class pisense.SenseIMU(settings=None, emulate=False)

	The SenseIMU class represents the Inertial Measurement Unit (IMU)
on the Sense HAT. Users can either instantiate the class themselves, or can
access an instance from SenseHAT.imu.

The settings parameter can be used to point to alternate settings files
but it is strongly recommended you leave this at the default as this can
affect the calibration of the IMU.

If the emulate parameter is True, the instance will connect to the
IMU in the desktop Sense HAT emulator instead of the “real” Sense HAT
IMU.

	
close()

	Call the close() method to close the inertial measurement unit
interface and free up any background resources. The method is
idempotent (you can call it multiple times without error) and after it
is called, any operations on the inertial measurement unit may return
an error (but are not guaranteed to do so).

	
read()

	Return the current state of the inertial measurement unit as an
IMUState tuple.

Note

This method will wait until the next set of readings are available,
and then return them. Hence it is suitable for use in a loop
without additional waits, although it may be simpler to simply
treat the instance as an iterator in that case.

This is in contrast to reading the gyro, accel,
compass, and orient attributes which always return
immediately.

	
accel

	Return the current reading from the accelerometer as a 3-dimensional
IMUVector tuple. The reading is measured in
standard gravities.

	
compass

	Return the current reading from the magnetometer as a 3-dimensional
IMUVector tuple. The reading is measured in in µT
(micro-teslas).

	
gyro

	Return the current reading from the gyroscope as a 3-dimensional
IMUVector tuple. The reading is measured in
radians-per-second.

	
name

	Returns the name of the IMU chip. On the Sense HAT this should always
be “LSM9DS1”.

	
orient

	Return the current calculated orientation of the board as a
IMUOrient tuple containing roll, pitch, and yaw in
radians.

Note

The sensors that are used in determining the orientation are
specified in the sensors property.

The orientation of the board is only calculated when the sensors
are read. The drift of certain sensors (the gyroscope in
particular) mean that reading the orientation more frequently can
result in greater accuracy.

	
rotation

	Specifies the rotation about the Z axis applied to IMU readings as a
multiple of 90 degrees. When rotation is 0 (the default), positive X
is toward the joystick, and positive Y is away from the GPIO pins:

[image: _images/rotation_0.svg]When rotation is 90, positive X is toward the GPIO pins, and positive
Y is toward the joystick:

[image: _images/rotation_90.svg]The other two rotations are trivial to derive from this.

Note

This property is updated by the unifying SenseHAT.rotation
attribute.

	
sensors

	Controls which sensors are used for calculating the orient
property.

14.2. IMUState

	
class pisense.IMUState(compass, gyro, accel, orient)

	A namedtuple() representing a single reading from the
Inertial Measurement Unit (IMU). The fields are as follows:

	
compass

	An IMUVector tuple containing the raw values from the
magnetometer in µT (micro-teslas).

	
gyro

	An IMUVector tuple containing the raw values from the
gyroscope in radians / second.

	
accel

	An IMUVector tuple containing the raw values from the
accelerometer in standard gravities (g).

	
orient

	The orientation of the HAT, as calculated from the three sensors,
presented as an IMUOrient instance.

14.3. IMUVector

	
class pisense.IMUVector(x, y, z)

	A namedtuple() representing a three-dimensional vector
with x, y, and z components. This is used to represent the output of
the three IMU sensors (magnetometer, gryoscope, and accelerometer).

Attention

TODO Add HAT-specific vector directions diagram

14.4. IMUOrient

	
class pisense.IMUOrient(roll, pitch, yaw)

	A namedtuple() representing the orientation of the Sense
HAT in radians (though the display is provided in degrees for human
convenience) as roll, pitch, and yaw.

Attention

TODO add HAT-specific roll, pitch, yaw diagram

14.5. SenseSettings

	
class pisense.SenseSettings(settings_file=None, emulate=False)

	Represents the calibration settings for the Sense HAT.

The settings_file refers to the INI-style file containing all calibration
settings for the Sense HAT. For no particularly good reason, the underlying
library requires that this filename ends with ‘.ini’.

Warning

If the specified file does not exist, it will be created with default
calibration settings. Hence you should ensure that the location
specified either exists or is writeable by the current user.
Furthermore, if the file successfully loads the underlying library
will attempt to overwrite it with “cleaned” values. If you wish to
keep modifications to the file (comments, etc.) ensure that the file is
effectively read-only for the executing user.

Yes, this is a ridiculous requirement and while I would dearly love to
re-write this chunk of the underlying library, it’s not something I
have time for currently!

	
settings

	Returns the underlying RTIMULib settings object.

15. Change log

15.1. Release 0.2 (2018-12-22)

Reasonably happy with the API now, so this will probably be the final 0.x
release before 1.0. Nonetheless, a few bugs fixed:

	Setting a non-zero rotation on the joystick failed on the next event that
occurred (#1)

	Multiline text rendering was broken (#2)

15.2. Release 0.1 (2018-07-19)

Initial release. Please note that as this is a pre-v1 release, API backwards
compatibility is not yet guaranteed. I’m mostly happy with the API but for
some subtle aspects of the ScreenArray class. Hence if anything’s
going to change it’s probably going to be there. Feedback welcome!

16. License

Copyright 2015-2018 Dave Jones

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pisense	

 	
 	
 pisense.environ	

 	
 	
 pisense.imu	

 	
 	
 pisense.screen	

 	
 	
 pisense.stick	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	accel (pisense.IMUState attribute)

 	(pisense.SenseIMU attribute)

 	
 	array (pisense.SenseScreen attribute)

 	array() (in module pisense)

B

 	
 	buf_to_image() (in module pisense)

 	
 	buf_to_rgb() (in module pisense)

 	buf_to_rgb888() (in module pisense)

C

 	
 	clear() (pisense.SenseScreen method)

 	close() (pisense.SenseEnviron method)

 	(pisense.SenseHAT method)

 	(pisense.SenseIMU method)

 	(pisense.SenseScreen method)

 	(pisense.SenseStick method)

 	
 	compass (pisense.IMUState attribute)

 	(pisense.SenseIMU attribute)

D

 	
 	DEFAULT_GAMMA (in module pisense)

 	direction (pisense.StickEvent attribute)

 	down (pisense.SenseStick attribute)

 	
 	down_held (pisense.SenseStick attribute)

 	draw() (pisense.SenseScreen method)

 	draw_text() (in module pisense)

E

 	
 	ease_in() (in module pisense)

 	ease_in_out() (in module pisense)

 	ease_out() (in module pisense)

 	
 	enter (pisense.SenseStick attribute)

 	enter_held (pisense.SenseStick attribute)

 	environ (pisense.SenseHAT attribute)

 	EnvironReadings (class in pisense)

F

 	
 	fade_to() (in module pisense)

 	(pisense.SenseScreen method)

G

 	
 	gamma (pisense.SenseScreen attribute)

 	
 	gyro (pisense.IMUState attribute)

 	(pisense.SenseIMU attribute)

H

 	
 	held (pisense.StickEvent attribute)

 	
 	hflip (pisense.SenseScreen attribute)

 	humidity (pisense.SenseEnviron attribute)

I

 	
 	image() (pisense.SenseScreen method)

 	image_to_rgb() (in module pisense)

 	image_to_rgb565() (in module pisense)

 	image_to_rgb888() (in module pisense)

 	
 	imu (pisense.SenseHAT attribute)

 	IMUOrient (class in pisense)

 	IMUState (class in pisense)

 	IMUVector (class in pisense)

L

 	
 	left (pisense.SenseStick attribute)

 	left_held (pisense.SenseStick attribute)

 	
 	linear() (in module pisense)

 	LOW_GAMMA (in module pisense)

N

 	
 	name (pisense.SenseIMU attribute)

O

 	
 	orient (pisense.IMUState attribute)

 	(pisense.SenseIMU attribute)

P

 	
 	pisense (module)

 	pisense.environ (module)

 	pisense.imu (module)

 	pisense.screen (module)

 	
 	pisense.stick (module)

 	play() (pisense.SenseScreen method)

 	pressed (pisense.StickEvent attribute)

 	pressure (pisense.SenseEnviron attribute)

R

 	
 	raw (pisense.SenseScreen attribute)

 	read() (pisense.SenseEnviron method)

 	(pisense.SenseIMU method)

 	(pisense.SenseStick method)

 	rgb565_to_image() (in module pisense)

 	rgb565_to_rgb() (in module pisense)

 	rgb565_to_rgb888() (in module pisense)

 	rgb888_to_image() (in module pisense)

 	rgb888_to_rgb() (in module pisense)

 	
 	rgb888_to_rgb565() (in module pisense)

 	rgb_to_image() (in module pisense)

 	rgb_to_rgb565() (in module pisense)

 	rgb_to_rgb888() (in module pisense)

 	right (pisense.SenseStick attribute)

 	right_held (pisense.SenseStick attribute)

 	rotation (pisense.SenseHAT attribute)

 	(pisense.SenseIMU attribute)

 	(pisense.SenseScreen attribute)

 	(pisense.SenseStick attribute)

S

 	
 	screen (pisense.SenseHAT attribute)

 	ScreenArray (class in pisense)

 	scroll_text() (in module pisense)

 	(pisense.SenseScreen method)

 	SenseEnviron (class in pisense)

 	SenseHAT (class in pisense)

 	SenseHATReinit

 	SenseIMU (class in pisense)

 	SenseScreen (class in pisense)

 	SenseSettings (class in pisense)

 	SenseStick (class in pisense)

 	
 	SenseStickBufferFull

 	SenseStickCallbackRead

 	sensors (pisense.SenseIMU attribute)

 	settings (pisense.SenseHAT attribute)

 	(pisense.SenseSettings attribute)

 	show() (pisense.ScreenArray method)

 	slide_to() (in module pisense)

 	(pisense.SenseScreen method)

 	stick (pisense.SenseHAT attribute)

 	StickEvent (class in pisense)

 	stream (pisense.SenseStick attribute)

T

 	
 	temp_average() (in module pisense)

 	temp_both() (in module pisense)

 	temp_humidity() (in module pisense)

 	
 	temp_pressure() (in module pisense)

 	temp_source (pisense.SenseEnviron attribute)

 	temperature (pisense.SenseEnviron attribute)

 	timestamp (pisense.StickEvent attribute)

U

 	
 	up (pisense.SenseStick attribute)

 	
 	up_held (pisense.SenseStick attribute)

V

 	
 	vflip (pisense.SenseScreen attribute)

W

 	
 	when_down (pisense.SenseStick attribute)

 	when_enter (pisense.SenseStick attribute)

 	when_left (pisense.SenseStick attribute)

 	
 	when_right (pisense.SenseStick attribute)

 	when_up (pisense.SenseStick attribute)

 	wipe_to() (in module pisense)

 	(pisense.SenseScreen method)

Z

 	
 	zoom_to() (in module pisense)

 	(pisense.SenseScreen method)

 _static/up.png

_images/ease_in.png

_images/ease_in_out.png

nav.xhtml

 Table of Contents

 		
 pisense

 		
 Installation

 		
 Raspbian installation

 		
 Other platforms

 		
 Getting started

 		
 Hardware

 		
 First Steps

 		
 The Screen

 		
 The Joystick

 		
 Environmental Sensors

 		
 Inertial Measurement Unit (IMU)

 		
 Further Reading

 		
 Simple Demos

 		
 Rainbow Scroller

 		
 Joystick Movement

 		
 Orientation Sensing

 		
 Environment Sensing

 		
 Project: Environment Monitor

 		
 Hygrometer

 		
 Barometer

 		
 Combining Screens

 		
 Interactivity!

 		
 Finishing Touches

 		
 Auto-start

 		
 Project: Maze Game

 		
 Frequently Asked Questions (FAQ)

 		
 Why?

 		
 You still haven’t answered why…

 		
 Why are you using single precision floats in the display?!

 		
 Why are orientation and gyroscopic values in radians, not degrees?

 		
 Can I use this with the Sense HAT emulator?

 		
 Sense HAT Emulator

 		
 Development

 		
 Development installation

 		
 Building the docs

 		
 Test suite

 		
 API - The Sense HAT

 		
 SenseHAT

 		
 Warnings

 		
 API - Screen

 		
 SenseScreen

 		
 Animation functions

 		
 Easing functions

 		
 Gamma tables

 		
 API - Screen Arrays

 		
 ScreenArray Class

 		
 Display Association

 		
 Data Type

 		
 Previews

 		
 Format Strings

 		
 Format conversions

 		
 Advanced conversions

 		
 API - Joystick

 		
 SenseStick

 		
 StickEvent

 		
 Warnings

 		
 API - Environment Sensors

 		
 SenseEnviron

 		
 EnvironReadings

 		
 Temperature Configuration

 		
 API - Inertial Measurement Unit (IMU)

 		
 SenseIMU

 		
 IMUState

 		
 IMUVector

 		
 IMUOrient

 		
 SenseSettings

 		
 Change log

 		
 Release 0.2 (2018-12-22)

 		
 Release 0.1 (2018-07-19)

 		
 License

_images/ease_out.png

_images/linear.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

